Utilities, Inc. of Louisiana Beau Village Water System

PWS ID: **LA1103113**

Message from Aaron Accardo, President

Dear Utilities, Inc. of Louisiana Customers,

I am pleased to share your Annual Water Quality Report for 2019. This report is designed to inform you of the quality of water we delivered to you over the past year. As your community water utility, we fully appreciate our role in the local community. We want you to understand the efforts we make to continually improve the water treatment process and protect our water resources.

Our team is committed to providing safe, reliable and cost effective service to our customers. All of our employees share in our commitment to act with integrity, protect the environment, and enhance the local community.

We are proud to share this report which is based on water quality testing through December 2019. We continually strive to supply water that meets or exceeds all federal and state water quality regulations.

Our dedicated local team of water quality experts is working in the community everyday ensuring that you, our customer, are our top priority and that we are providing the highest quality service - now and in the years to come.

Best regards,

Ou Cale

Este informe contiene información muy importante sobre su agua beber. Tradúzcalo ó hable con alguien que lo entienda bien.

According to the Centers for Disease Control and Prevention (CDC) and the US Environmental Protection Agency (EPA), the virus that causes COVID-19 has not been detected in drinking water. Conventional water treatment methods that use disinfection, such as those provided by Utilities, Inc. of Louisiana, should remove or inactivate the virus that causes COVID-19 as they do for other pathogens. Based on current evidence, the risk to water supplies is low. You can continue to use and drink water from your tap as usual. EPA also encourages the public to help keep household plumbing and our nation's water infrastructure operating properly by only flushing toilet paper. Disinfecting wipes and other items should be disposed of in the trash, not the toilet.

For more information, visit the CDC at https://www.cdc.gov/coronavirus/2019-ncov/php/water.html and EPA at https://www.epa.gov/coronavirus/coronavirus-and-drinking-water-and-wastewater.

Source of Drinking Water

Source Name	Source Water Type
BEAU VILLAGE WELL	Ground Water

Source Water Assessment

Source Water Assessment Plan (SWAP) is now available from our office. This plan is an assessment of a delineated area around our listed sources through which contaminants, if present, could migrate and reach our source water. It also includes an inventory of potential sources of contamination within the delineated area, and a determination of the water supply's susceptibility to contamination by the identified potential sources. According to the SWAP, our water system had a susceptibility rating of 'MEDIUM'. If you would like to review the Source Water Assessment Plan, please feel free to contact our office at 877 875-3711.

Thank you for allowing us to continue providing your family with clean, quality water this year. In order to maintain a safe and dependable water supply we sometimes need to make improvements that will benefit all of our customers.

Help Protect our Resources

Help put a stop to the more than 1 trillion gallons of water lost annually nationwide due to household leaks. These easy to fix leaks waste the average family the amount of water used to fill a backyard swimming pool each year. Plumbing leaks can run up your family's water bill an extra 10 percent or more, but chasing down these water and money wasting culprits is as easy as 1—2—3. Simply check, twist, and replace your way to fewer leaks and more water savings:

- <u>Check</u> for silent leaks in the toilet with a few drops of food coloring in the tank, and check your sprinkler system for winter damage.
- ⇒ <u>Twist</u> faucet valves; tighten pipe connections; and secure your hose to the spigot. For additional savings, twist a WaterSense labeled aerator onto each bathroom faucet to save water without noticing a difference in flow. They can save a household more than 500 gallons each year—equivalent to the amount water used to shower 180 times!
- ⇒ Replace old plumbing fixtures and irrigation controllers that are wasting water with WaterSense labeled models that are independently certified to use 20 percent less water and perform well.

For more information visit www.epa.gov/watersense.

Visit us online at www.uiwater.com/louisiana to view the Water Quality Reports. Also visit our website for water conservation tips and other educational material.

EPA Wants You To Know

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water Information on lead in drinking water, testing methods, and include: steps you can take to minimize exposure is available from

- A. **Microbial contaminants,** such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- B. Inorganic contaminants, such as salts and metals, which can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- C. Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.
- D. Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, and septic systems.
- E. Radioactive contaminants, which can be naturally occurring or be the result of oil and gas production and mining activities.

What measures are in place to ensure water is safe to drink?

In order to ensure that tap water is safe to drink, the EPA prescribes regulations, which limit the amount of certain contaminants in water provided by public water systems. The Food and Drug Administration (FDA) regulations establish limits for contaminants in bottled water, which must provide the same protection for public health.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's Safe Drinking Water Hotline at 1-800-426-4791.

Special notice from EPA for the elderly, infants, cancer patients and people with HIV/AIDS or other immune system problems

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno -compromised persons such as persons with cancer chemotherapy, have undergoing persons who undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791).

Information Concerning Lead in Water

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials

and components associated with service lines and home plumbing. Utilities, Inc. of Louisiana is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at

http://www.epa.gov/safewater/lead.

Water that remains stationary within your home plumbing for extended periods of time can leach lead out of pipes joined with lead-containing solder as well as brass fixtures or galvanized pipes. Flushing fixtures has been found to be an effective means of reducing lead levels. The flushing process could take from 30 seconds to 2 minutes or longer until it becomes cold or reaches a steady temperature. Faucets, fittings, and valves, including those advertised as "lead-free," may contribute lead to drinking water. Consumers should be aware of this when choosing fixtures and take appropriate precautions. Visit the NSF Web site at www.nsf.org to learn more about lead-containing plumbing fixtures.

Drain Disposal Information

Sewer overflows and backups can cause health hazards, damage home interiors, and threaten the environment. A common cause is sewer pipes blocked by grease, which gets into the sewer from household drains. Grease sticks to the insides of pipes. Over time, the grease can build up and block the entire pipe. Help solve the grease problem by keeping this material out of the sewer system in the first place:

- Never pour grease down sink drains or into toilets.
 Scrape grease into a can or trash.
- Put strainers in sink drains to catch food scraps / solids for disposal.

Prescription Medication and Hazardous Waste

Household products such as paints, cleaners, oils, and pesticides, are considered to be household hazardous waste. Prescription and over-the-counter drugs poured down the sink or flushed down the toilet can pass through the wastewater treatment system and enter rivers and lakes (or leach into the ground and seep into groundwater in a septic system). Follow the directions for proper disposal procedures. Do not flush hazardous waste or prescription and over-the-counter drugs down the toilet or drain. They may flow downstream to serve as sources for community drinking water supplies. Many communities offer a variety of options for conveniently and safely managing these items. For more information, visit the EPA website at:

www.epa.gov/hw/household-hazardous-waste-hhw.

The Safe Drinking Water Act was passed in 1974 due to congressional concerns about organic chemical contaminants in drinking water and the inefficient manner by which states supervised and monitored drinking water supplies. Congress' aim was to assure that all citizens served by public water systems would be provided high quality water. As a result, the EPA set enforceable standards for health-related drinking water contaminants. The Act also established programs to protect underground sources of drinking water from contamination.

Hardwarfending This Depart to adopt hele consultation day		
Understanding This Report In order to help you understand this report, we want you to understand a few terms and abbreviations that are contained in it.		
Action level (AL)	The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.	
Action level goal (ALG)	The level of a contaminant in drinking water below which there is no known or expected risk to health. ALGs allow for a margin of safety.	
EPA	Environmental Protection Agency.	
Maximum contaminant level (MCL)	The highest level of a contaminant that is allowed in drinking water. MCL's are set as close to the MCLG's as feasible using the best available treatment technology.	
Maximum contaminant level goal (MCLG)	The "goal" is the level of a contaminant in drinking water below which there is no known or expected health risk. MCLG's allow for a margin of safety.	
Maximum Residual Disinfectant Level (MRDL)	The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.	
Maximum Residual Disinfectant Level Goal (MRDLG)	The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.	
Not Applicable (N/A)	Information not applicable/ not required for that particular water system or for that particular Rule.	
Not Detected (ND)	Laboratory analysis indicates that the constituent is not present.	
Parts per million (ppm) or milligrams per liter (mg/l)	One part per million corresponds to one minute in two years or a single penny in \$10,000.	
Parts per billion (ppb) or micrograms per liter (ug/l)	One part per billion corresponds to one minute in 2,000 years or a single penny in \$10,000,000.	
Picocuries per liter (pCi/L)	A measure of radioactivity in the water.	
Locational Running Annual Average (LRAA)	The average of sample analytical results for samples taken at a particular monitoring location during the previous four calendar quarters under the Stage 2 Disinfectants and Disinfection Byproducts Rule	
Running Annual Average (RAA)	Calculated running annual average of all contaminant levels detected.	
Level 1 Assessment	Is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.	
Level 2 Assessment	A very detailed study of the water system to identify potential problems and determine (if possible) why an E. coli MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions .	
Nephelometric Turbidity Units (NTU)	A measure of water clarity. Turbidity in excess of 5 NTU is just noticeable to the average person.	
Treatment Technique (TT)	A treatment technique is a required process intended to reduce the level of a contaminant in drinking water.	

Did You Know?

- ♦ The average family of four uses 255 gallons of water a day, 1,785 gallons a week, and 7,650 gallons per month.
- water
- ◆ Taking a shower will use approximately 5-10 gallons per minute. A 15-minute shower will use 75-150 gallons.
- ♦ Your kitchen or bathroom sink uses approximately 4-5 gallons a minute.
- ◆ One dishwasher load uses approximately 4-5 gallons a minute.
- ♦ Washing clothes uses approximately 35 gallons per load.

We ask that all our customers help us protect our water sources which are the heart of our community, our way of life and our children's future.

Monitoring Your Water

The Louisiana Department of Health and Hospitals - Office of Public Health routinely monitors for constituents in your drinking water according to Federal and State laws. The following table(s) lists all the drinking water contaminants that were detected in the last round of sampling for the particular contaminant group. The presence of contaminants does not necessarily indicate that water

poses a health risk. Unless otherwise noted, the data presented in the table is from testing done January 1 through December 31, 2019. The EPA or the State ♦ A single toilet flush uses approximately 5-7 gallons of requires us to monitor for certain contaminants less than once per year because the concentrations of these contaminants are not expected to vary significantly from year to year. Some of the data, though representative of the water quality, maybe more than one year old.

*MCLs are set at very stringent levels. To understand the possible health effects described for many regulated contaminants, a person would have to drink 2 liters of water every day at the MCL level for a lifetime to have a one-in-amillion chance of having the described health effect.

If You Have Questions Or Want To Get Involved

We want our valued customers to be informed about their water utility. If you have any questions about this report, want to attend any scheduled meetings, or simply want to learn more about your drinking water, please contact CAROL PETRANEK at 504-491-1632.

We at the Utilities, Inc. of Louisiana work around the clock to provide top quality drinking water to every tap.

Violations: In 2019, Utilities, Inc. of Louisiana performed all required monitoring for contaminants. During the period covered by this report we had the below noted violations. **Compliance Period Analyte** Type No Violations Occurred in the Calendar Year of 2019 Our water system tested a minimum of 2 samples per month in accordance with the Total Coliform Rule for microbiological contaminants. With the microbiological samples collected, the water system collects disinfectant residuals to ensure control of microbial growth. **MRDL** Disinfectant **Date Highest RAA** Unit Range MRDLG Typical Source CHLORINE 2019 1.3 ppm 0.56 - 1.684 Water additive used to control microbes. In the tables below, we have shown the regulated contaminants that were detected. Chemical Sampling of our drinking water may not be required on an annual basis; therefore, information provided in this table refers back to the latest year of chemical sampling results. To determine compliance with the primary drinking water standards, the treated water is monitored when a contaminant is elevated in the source water. Collection Source Water Regulated Highest MCL Unit MCLG Typical Source Range **Date** Value **Contaminants** Erosion of natural deposits; Runoff from orchards; 3/14/2017 ARSENIC 1 0 - 1 10 0 ppb Runoff from glass and electronics production wastes Discharge from steel and pulp mills; Erosion of natural CHROMIUM 3/14/2017 0 - 10 10 ppb 100 100 deposits Erosion of natural deposits; Water additive which FLUORIDE 3/14/2017 0.2 0.2 ppm 4 promotes strong teeth; Discharge from fertilizer and aluminum factories Treated Water Regulated Collection Highest Range Unit MCL MCLG Typical Source **Contaminants** Date Value Runoff from fertilizer use; Leaching from septic tanks, 10 4/23/2019 0.1 10 NITRATE-NITRITE 0.1 ppm sewage; Erosion of natural deposits Source Water Radiological Collection Highest Range Unit **MCL** MCLG **Typical Source** Value Contaminants **Date** COMBINED RADIUM (-226 3/14/2017 0.706 0 0 - 0.706pCi/l 5 Erosion of natural deposits & -228) Treated Water Radiological Collection **Highest** Range Unit **MCL** MCLG Typical Source **Contaminants** Date Value No Detected Results were Found in the Calendar Year of 2019 90TH **Sites** Lead and Copper Date Range Unit AL **Typical Source** Percentile Over AL No Detected Results were Found in the Calendar Year of 2019 Highest Disinfection Byproducts Sample Point Period Range Unit MCL MCLG Typical Source **LRAA** TOTAL HALOACETIC ACIDS By-product of drinking water 101 FOREST LOOP 2019 4 3.5 - 3.5ppb 60 0 disinfection (HAA5) TOTAL HALOACETIC ACIDS By-product of drinking water **412 WATER OAK** 2019 1 1.4 - 1.4 ppb 60 0 (HAA5) disinfection By-product of drinking water TTHM 101 FOREST LOOP 2019 13 13 - 13 80 0 ppb chlorination By-product of drinking water TTHM **412 WATER OAK** 2019 7 7.2 - 7.2ppb 80 0 chlorination **Collection Date Highest Value** Unit **SMCL Source Secondary Contaminants** Range The state requires monitoring for other misc. contaminants, some for which the EPA has set national secondary drinking water standards (SMCLs) because they may cause cosmetic effects or aesthetic effects (such as taste, odor, and/or color) in drinking water. The contaminants with SMCLs normally do not have any health effects and normally do not affect the safety of your water. MG/L IRON 3/14/2017 0.7 0 - 0.70.3 **MANGANESE** 3/14/2017 0.07 0 - 0.07 MG/L 0.05 РΗ PH 3/14/2017 8.6 6.2 - 8.68.5 **SULFATE** 3/14/2017 10 8 - 10 MG/L 250 Treated Secondary Contaminants **Collection Date Highest Value** Range Unit **SMCL**

No Detected Results were Found in the Calendar Year of 2019

PFAS Testing

Utilities, Inc. of Louisiana is currently conducting statewide drinking water testing for Per- and Polyfluoroalkyl Substances (PFAS). These man-made compounds are used in the manufacturing of products resistant to water, grease or stains including firefighting foams, cleaners, cosmetics, paints, adhesives and insecticides. PFAS can migrate into the soil, water, and air and is likely present in the blood of humans and animals all over the world. The Environmental Protection Agency (EPA) has established a health advisory level at 70 parts per trillion. For more information visit https://www.epa.gov/ground-water-and-drinking-water/drinking-water-health-advisories-pfoa-and-pfos. Notification has or will be sent to all registered customers of the testing results once completed.

Utilities, Inc. of Louisiana is committed to providing safe, reliable, and cost-effective drinking water services to all of our customers.

- Iron Excessive iron in water may cause staining of laundry & plumbing fixtures & may accumulate as deposits in the distribution system.
- Manganese Excess manganese could produce a brownish color in laundered goods, impair the taste of tea, coffee, and other beverages and may cause a dark brown or black stain on porcelain plumbing fixtures.
- pH is a term used to indicate the alkalinity or acidity as ranked on a scale from 1.0 to 14.0. A lower pH could produce bitter metallic taste and corrosion where a higher pH could produce a slippery feel, soda taste, and deposits.

There are no additional required health effects notices.

There are no additional required health effects violation notices.

To access your utility account anytime, anywhere, please register for our customer portal & download MyUtilityConnect at https://connect.myutility.us/connect/

