

Harbor Ridge Source Water Protection Plan

Lake County, IL June 2024

SOURCE WATER PROTECTION PLAN

Prairie Path Water Company – Harbor Ridge

TABLE OF CONTENTS

			PAGE
	SECTIO	<u>NC</u>	<u>No.</u>
1.0	INTRO	DDUCTION	1-1
	1.1	Background	1-1
2.0	VISIO	N STATEMENT	2-1
	2.1	Policy and Commitment to Protecting Source Water	2-1
	2.2	Reasons to Protect Source Water	2-1
	2.3	Barriers to Protecting Source Water	2-2
	2.4	Names of the Individuals Who Developed the Vision Statement	2-3
3.0	SOUR	CE WATER ASSESSMENT	
	3.1	Statement of the Importance of Source Water	3-1
	3.2	List of Water Supplies that Obtain Water from the Community Water Supply	3-2
	3.3	Delineation of all Sources of Water Used by the Community Water Supply	3-2
	3.4	Report on the Quality of the Source Water for All Sources of Water	3-4
	3.5	Report on the Quality of the Finished Water	3-6
	3.6	Identification of Potential Sources of Contamination to the Source Water	3-9
	3.7	Analysis of the Source Water's Susceptibility to Contamination	.3-10
	3.8	Explanation of the Community Water Supply's Efforts to Protect Its Source	
		Water	.3-12
4.0	SOUR	CE WATER PROTECTION PLAN OBJECTIVES	
	4.1	Identified Concerns	4-1
	4.2	Objectives	4-1
5.0	ACTIC	N PLAN	5-1
	5.1	Projects, Programs, and Activities to Meet Objectives	5-1
	5.2	Schedule for Implementing Projects, Programs, and Activities	5-1
	5.3	Identification of Necessary Resources to Implement the Plan	5-1
	5.4	Identification of Potential Problems and Obstacles in Implementing the Plan.	5-2

<u>Tables</u>

3-1	Water Supply Well Information	3-3
3-2	Source Water Quality Summary	3-5
3-3	Finished Water Quality Summary	3-8
3-4	Potential Contaminant Source Inventory	3-14
5-1	Source Water Protection Plan Schedule	5-3 and 5-4

<u>Exhibits</u>

1-1	Harbor Ridge Municipal Boundary and Water Supply Wells	1-2
3-1	Harbor Ridge CWS Boundary and Water Supply Wells	3-3
3-2	Iron Concentration Trend	3-6
3-3	Map of Potential Sources of Contamination	3-10
3-4	Groundwater Susceptibility	3-11

Appendices

Appendix A	Source Water Protection Plan Regulations
Appendix B	Well Information
Appendix C	Representative Source Water Quality Analytical Reports

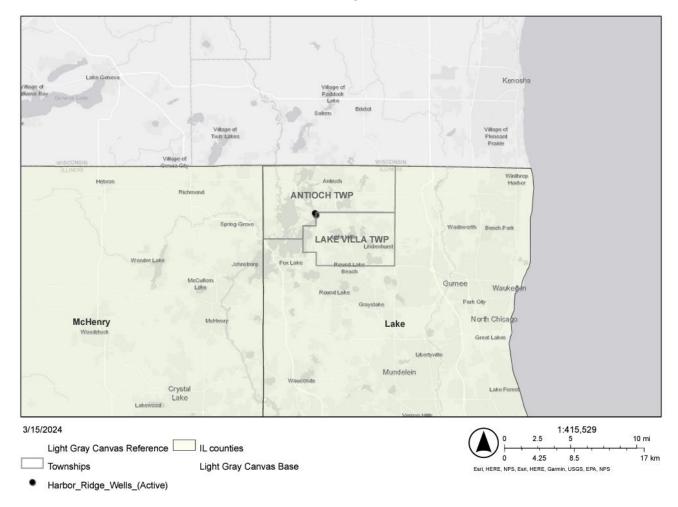
SECTION 1: INTRODUCTION

Prairie Path Water Company (PPWC) owns and operates the Harbor Ridge Community Water System (CWS) (IL0975620) according to the rules and regulations of the State of Illinois. On July 26, 2019, the Illinois Pollution Control Board passed new and updated regulations for community water systems including Illinois Administrative Code Title 35, Subpart 604, Subpart C - Source Water Protection Plan. The purpose of this new requirement is to facilitate protection of source water quality and quantity throughout the State. It requires each community water supply that treats surface or groundwater as a primary or emergency supply of water to develop a Source Water Protection Plan (SWPP). The SWPP must contain the following minimum elements:

- a) a vision statement;
- b) a source water assessment;
- c) the objectives; and
- d) an action plan.

The specific requirements for each of the elements list above are contained in the regulation, which is included herein as Appendix A. This report is submitted to the Illinois Environmental Protection Agency (IEPA) in fulfillment of the Harbor Ridge CWS's requirement under Subpart C – Source Water Protection Plan.

1.1 Background


The Harbor Ridge CWS is in both Antioch and Lake Villa Townships, Lake County (Exhibit 1-1). The CWS is comprised of a network of various supply, treatment, storage, distribution, and control components. The water system components are specifically designed and operated to provide safe, reliable, and affordable drinking water to the Harbor Ridge CWS water customers. The existing supply consists of one shallow sand and gravel well designated Well 2 and a deep bedrock well designated Well 3. Both Wells 2 and 3 are cased off through the uppermost sand and gravel layers, but draw from lower Quaternary group layers featuring the Wadsworth, Henry, and Equality formations. Well 3 extends to draw from the deeper limestone, sandstone, and chert aquifers of Lake County as well. Well 1 was abandoned.

The pumped water from Well Nos. 2 and 3 flows to Harbor Ridge CWS's Water Treatment Plant (TP02). The raw groundwater is then treated chemically with sodium hypochlorite for bacterial

disinfection, and AQUA MAG polyphosphate blend for corrosion inhibition and metal ion sequestration in the distribution system. The water from Well 1 is treated to meet drinking water quality standards and is then distributed to Harbor Ridge CWS's residential service population of 303 delivered through 300 residential water service connections.

The effectiveness of the system depends on the availability and quality of the water used as the source of water (source water). Significant changes in source water availability or quality often require costly modifications to the water system. Therefore, the Harbor Ridge CWS benefits from Source Water Protection because the program can reduce the risk of source water impairment.

Exhibit 1-1: Harbor Ridge CWS Location Map

SECTION 2: VISION STATEMENT

This section presents the System's adherence to the requirements of Section 604.310 Vision Statement, which are:

The vision statement must include the following:

- a) the community water supply's policy and commitment to protecting source water;
- b) an explanation of the community water supply's resources to protect source water;
- c) an explanation of the barriers to protecting source water; and
- d) the names of the individuals who developed the vision statement.

2.1 Policy and Commitment to Protecting Source Water

The Prairie Path Water Company - Harbor Ridge CWS policy and commitment to protect source water begins with the following vision statement:

Prairie Path Water Company is committed to Source Water Protection Programs with the purpose of ensuring the safety, integrity and sustainability of our communities' drinking water, for current and future generations to come, all in an effort to help people enjoy a better life and help communities thrive.

2.2 Resources to Protect Source Water

Prairie Path Water Company commits the following resources to protect the source water of the Harbor Ridge CWS:

- Human capital and financial resources to protect our source water and to back our commitment to the preservation of safe and sustainable drinking water.
- Staff time and effort to regularly monitor the well supply, monitor changes in potential sources of contamination, and regularly coordinate with local zoning officials to identify future potential sources of contamination.
- Engaging consultants to update the existing source water protection plan to demonstrate the System's commitment to continually improving the plan with updated

information and incorporating lessons learned through experience.

 Development and continual updates to the Harbor Ridge CWS Emergency Response Plan.

2.3 Barriers to Protecting Source Water

The key to ensuring clean, safe and reliable drinking water is to understand the drinking water supply from the source all the way to the consumer's tap. This knowledge includes understanding the general characteristics of the water and the land surrounding the water source, as well as mapping all the real and potential threats to the water quality. These threats can be natural, such as seasonal droughts or flooding, or created by human activity, such as agriculture, industrial practices, or recreational activities in the watershed. Threats can also arise in the treatment plant or distribution system thanks to operational breakdowns or aging infrastructure.

The multi-barrier approach takes all these threats into account and makes sure there are "barriers" in place to either eliminate them or minimize their impact. It includes selecting the best available source (e.g., lake, river, aquifer) and protecting it from contamination, using effective water treatment, and preventing water quality deterioration in the distribution system. The approach recognizes that while each individual barrier may not be able to completely remove or prevent contamination, and therefore protect public health, together the barriers work to provide greater assurance that the water will be safe to drink over the long term.

By placing integrated barriers from the source to the consumer at the tap, the Harbor Ridge CWS helps protect the population it serves from the risk of contamination and waterborne disease. The System's multiple barrier approach includes:

- Source Water Protection delineation of areas that contribute groundwater to the water supply wells, inventory of existing and future threats also referred to as potential sources of contamination, and management of activities in and around the recharge areas of wells.
- Treatment Systems disinfection to eliminate pathogens that are responsible for waterborne diseases.

- Distribution Systems maintaining adequate pressure within the water distribution system to prohibit inflow of non-potable water, controlling pressure during water main breaks using water system valving, conducting water main repairs quickly, and properly disinfecting water mains before they are placed back into service.
- Monitoring programs 24-hour a day monitoring of the water system using a customized Supervisory Control and Data Acquisition (SCADA) system, frequently collecting, and analyzing water samples, security fencing, and visual inspections of operating facilities.
- Well security PPWC wellheads are located within locked well houses and or gated off areas to protect from vandalism or intentional contamination efforts.
- Operational Response maintaining an emergency response plan, employing certified operators with proper training and experience to operate the water system, commitment of the organization to continuous improvement, and the assistance of outside experts as needed.

2.4 Names of the Individuals Who Developed the Vision Statement

The names of the individuals who developed the Vision Statement are as follows:

- Justin Kersey, PPWC President
- Mike Miller, PPWC Vice-President of Operations
- David Hankins, PPWC Safety and Compliance Manager
- Kyle Woodworth, PPWC Area Manager
- Tim Holdeman, Engineering Enterprises, Inc.
- Sydney Shaffer, Engineering Enterprises, Inc.
- Jeniece Neville, Engineering Enterprises, Inc.

SECTION 3: SOURCE WATER ASSESSMENT

This section presents the System's adherence to the requirements of Section 604.315 Source Water Assessment, which are:

- a) The source water assessment must contain the following information:
 - 1) statement of the importance of the source water;
 - 2) a list of water supplies that obtain water from this community water supply;
 - 3) delineation of all sources of water used by the community water supply, including:
 - *A)* for surface water, description of the watershed, map of the watershed, and intake locations;
 - B) for groundwater, the well identification number, well description, well status and well depth; a description of setback zones, and a description of the aquifer for each well;
 - a report on the quality of the source water for all sources of water delineated in subsection (a)(3), including:
 - *A)* when and where samples used to determine the quality of the source water were taken. These samples must be tested by a certified laboratory; and
 - B) the certified laboratory's results;
 - 5) a report on the quality of the finished water;
 - 6) identification of potential sources of contamination to the source water;
 - 7) analysis of the source water's susceptibility to contamination; and
 - 8) explanation of the community water supply's efforts to protect its source water.

3.1 Statement of the Importance of Source Water

The importance of source water can be conveyed by the importance water plays in the communities it serves. The Harbor Ridge CWS provides water to several residential sites. The Wadsworth, Henry, and Equality formations of the Quaternary system aquifers are the primary sources of this water. The Harbor Ridge CWS utilizes two (2) active community water supply wells. The system's water supply wells provides an average of 48,853 gallons per day to a population of approximately 852 people (284 service connections) based on the 2020 Census data. Prairie Path Water Company recognizes that no community can exist without a safe, reliable source of drinking water, and protection of that source water is of the utmost importance.

3.2 List of Water Supplies that Obtain Water from the Community Water Supply

The Harbor Ridge CWS currently does not supply water to any Community Water Supplies.

3.3 Delineation of all Sources of Water Used by the Community Water Supply

The Harbor Ridge CWS operates two (2) groundwater wells (Wells 2 and 3). A map showing the location of the water utility service area and water supply wells is shown as Exhibit 3-1. Key information about the wells is listed in Table 3-1, including information required by the SWPP regulation and additional information. Additional well information can be found in Appendix B.

The Illinois Groundwater Protection Act (IGPA) in its first phase established setback zones to prohibit the siting of potential sources of contamination within a number of feet of the wellhead. The minimum setback zone prohibits the siting of primary or secondary sources within 200 ft of the wellhead for shallow aquifers. An optional maximum setback zone of 1,000 feet is allowed to prohibit primary sources of contamination from being sited between the minimum setback and 1,000 radial feet of the well.

In the second phase, the IGPA established the delineation of a wellhead protection area (WHPA) for wells that draw from unconfined aquifers out to a 5-year time-of-travel boundary, although it is not used in this report.

	INFORMATION REQUIRED BY SWPP REGULATION					ADDITIONAL INFORMA	TION	
WELL ID	WELL	WELL	WELL	CASING	MINIMUM			YEAR
NUMBER	NAME	STATUS	DEPTH	LENGTH	SETBACK	AQUIFER	ADDRESS	DRILLED
WL00899	2	Active	121	115	200	Quaternary - Wadsworth, Henry, and Equality Drift	39857 N Harbor Ridge Dr Antioch, IL 60002	1992
WL01060	3	Active	130	No Record	200	Quaternary - Wadsworth, Henry, and Equality Drift, upper Silurian	Hidden Bunker Ct Antioch, IL 60002	1995
WL20247	1	Inactive						1970

Table 3-1: Water Supply Well Information

Exhibit 3-1: Harbor Ridge CWS Boundary and Water Supply Well

 Harbor_Ridge_Wells_(Active) Harbor Ridge Service Area 200_ft_Setback___Minimum 1000ft_Setback___Maximum

421

		1:12,985	
•) •	0.07	0.15	0.3 mi
	0.13	0.25	0.5 km
Lake County, IL GI	S, Earthstar G	eographics	

3.4 Report on The Quality of the Source Water for All Sources of Water

An analysis of the quality of groundwater from the Wadsworth, Henry, and Equality formations of the Quaternary aquifers used by the System as its source water was conducted as part of the Source Water Assessment. Water quality data from groundwater samples from the System's wells collected from 2014 to 2023 is presented in Table 3-2. A select number of analytical results are included in Appendix C.

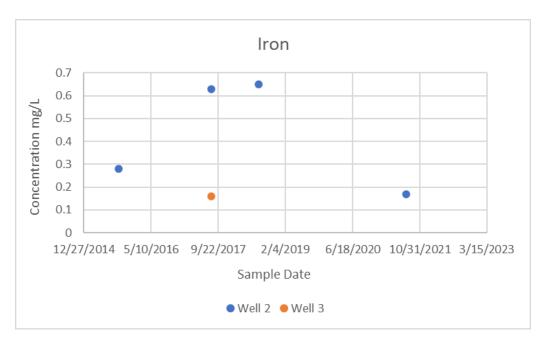
The concentration of inorganic constituents in the groundwater pumped by the System's wells is summarized and compared to Class 1 Water Quality Standards for Groundwater (35 III. Admin. Code Part 620). All inorganic compounds were reported comfortably under the Class 1 Standards with the exception of cadmium, which was detected at a level of 3 ug/L in August of 2017. Cadmium was not detected previous to or since that 2017 sample date. All organic compounds including the Volatile Organic Compounds (VOCs) and Synthetic Organic Compounds (SOCs) were reported below the detection limits of each testing method.

Exhibit 3-2 is a graph of iron concentrations from Wells 2 and 3. The graph shows that iron concentrations have been fluctuating since 2015 with results as high as 0.65 mg/L, which is still not near the Water Quality Standard of 5 mg/L. There were no compounds exhibiting clear increasing or decreasing trends in the Harbor Ridge source water samples.

	Wells		2 (WL00899)	3 (WL01060)	Class 1 GW Qual. Std.
	Sand and Gravel		6	•	
	Silurian Dolom			•	
ifer	Galena-Plattevi	-			
Aquifer	St. Peter Sandst Ironton-Galesville Sa				
4	Eau Claire Sands				
	Mt. SimonSands				
	Antimony	(μg/L)	ND	ND	6
	Arsenic	(μg/L)	1.3 - 1.4	ND	10
	Barium	(μg/L)	55 - 65	65.7	2000
	Berylium	(μg/L)	ND	ND	4
	Boron	(mg/L)	ND - 0.269	184.0	2
	Cadmium	(μg/L)	ND - 3	ND	5
spi	Chloride	(mg/L)	ND - 14	NR	200
uno	Chromium	(μg/L)	4.0 - 5.0	4	100
mp	Cyanide	(mg/L)	ND	ND	0.2
Inorganic Compounds	Fluoride	(mg/L)	0.931 - 1.04	NR	4
nic	Iron	(mg/L)	0.17 - 0.65	0.161	5
rga	Manganese	(µg/L)	4.4 - 7.3	17.2	150
Ino	Mercury	(µg/L)	ND	ND	2
	Nickel	(μg/L)	ND	ND	100
	Selenium	(μg/L)	ND	ND	50
	Sodium	(mg/L)	26 - 39	23.1	
	Sulfate	(mg/L)	25 - 63	ND	400
	Thallium	(μg/L)	ND	ND	2
	Total Dissolved Solids	(mg/L)	300 - 350	NR	1200
als	ALPHA, Gross	pCi/L	ND	NR	
Radiologicals	Radium-226	pCi/L	ND - 1.04	NR	20
diol	Radium-228	pCi/L	ND - 0.732	NR	20
	Combined Radium	pCi/L	0.732 - 1.04	NR	
PFAS	PFOA	(ng/L)	ND	ND	4
P	PFOS	(ng/L)	ND	ND	4
	SOCs ^b	(µg/L)	ND	ND	
	VOCs ^b	(μg/L)	ND	ND	

Table 3-2: Source Water Quality Summary

Notes:


ŰĽI

 ^a Results from Safe Drinking Water Information System (SDWIS) Lab Sample Numbers EG04282-01, 8073472-01, 17H0152-01_01, 17H0152-02_01, 5092252-01, EB00123-01, 8020143-01, 17H0152-01_02, 5031818-01, EG04282-01, 8073472-01, 17H0152-01_02, 17H0152-02_02, 5092252-01, GD04596-01, 30112771001
 ^b Detailed laboratory results can be found in Appendix C NR = No Record ND = Non Detect

Highlighted value indicates raw water concentration exceeds Class 1 Groundwater Quality Standards. In all cases, treatment is in place to reduce concentration below the standard, and routine monitoring is required.

Highlighted value indicates raw water concentration for parameter that may be approaching the Groundwater Quality Standard or may cause water quality issues. In some cases, treatment is in place to reduce concentration below the standard, and routine monitoring is recommended.

Exhibit 3-2: Iron Concentration Trend

3.5 Report on the Quality of the Finished Water

An analysis of Harbor Ridge's finished water was conducted as part of the Source Water Assessment. Table 3-3 presents a summary of the System's finished water quality based on analytical results from 2019 to 2023. Based on the water quality sampling results shown in Table 3-3, total trihalomethanes (TTHMs), chlorine (Cl₂), iron, and copper have neared their respective MCLs, yet the System's finished water does not exceed any primary maximum contaminant levels (MCLs).

Shallow aquifers in much of Northeastern Illinois are experiencing elevated Per- and Polyfluoroalkyl Substances (PFAS) levels. The IEPA has initiated a statewide testing program to test for and monitor PFAS levels of 18 PFAS compounds in water supplies throughout the state but has not yet set enforceable drinking water standards for these compounds. Rather, it has set a health guidance level for six (6) PFAS compounds. The USEPA has recently finalized MCLs for PFOS and PFOA and four (4) other PFAS compounds, although those will not take effect until 2029. The Harbor Ridge System has no detectable PFAS levels in its finished water. The treatment processes applied in the Harbor Ridge CWS do not remove PFAS compounds, therefore the finished water sample results are representative of PFAS compounds in the source water.

The water quality reports in the form of Consumer Confidence Report can be found on the System's website at: <u>https://www.myutility.us/prairiepathwater/water-safety/water-quality-reports</u>.

			Well Effluent ^a	MCLG ^b	MCL ^b
	Sand and Gravel		•		
	Silurian Dolomi	6			
fer	Galena-Plattevi				
Aquifer	St. Peter Sandst				
A	Ironton-Galesville Sa Eau Claire Sands				
	Mt. SimonSandst				
	Copper	ppm	0.85 - 0.875	1.3	1.3
	Lead	ppb	1.1 - 3.7		15
	Arsenic	ppb	1.3		10
	Barium	ppm	0.055 - 0.065	2	2
	Iron	ppm	0.17 - 0.65		1
	Manganese	pph	4.4 - 7.3	150	150
locs	Total Nitrate & Nitrite	ppn	NR	10	10
<u>0</u>	Nitrate as N	ppm	NR	10	10
	Fluoride	ppm	0.931 - 0.99	4	4
	Sulfate	ppm	NR		
	Selenium	pph	NR	50	50
	Sodium	ppm	29 - 39		
	Zinc	ppm	0.013 - 0.017	5	5
Ś	TTHMs		17.7 - 49		80
Disinfectants		ppb			
fect	HAA5	ppb	5.63 - 19.56		60
sin	Chlorine as Cl ₂	ppm	0.60 - 2.57	4	4
	TOC	n/a	NR		
ials	Turbidity	NTU	NR		1
Microbials	Turbidity (%<+ 0.3NTU)		NR		≤ 0.3
	Total Coliform Bacteria	#pos/mo	NR	1	
Radiologicals	Comb. Radium	ppm	0.732 - 1.04		5
Radiol	Gross ALPHA	(pCi/L)	NR		15
	SOCs		NR		
	VOCs		NR		

Table 3-3: Finished Water Quality Summary

Notes:

Results are from Harbor Ridge 2019 - 2023 Water Quality Reports.

NR = No Record ND = Non Detect

^a The Well Effluent column reflects the water in the distribution system.

^b MCL = Maximum Contaminant Level MCLG=Maximum Contaminant Level Goal

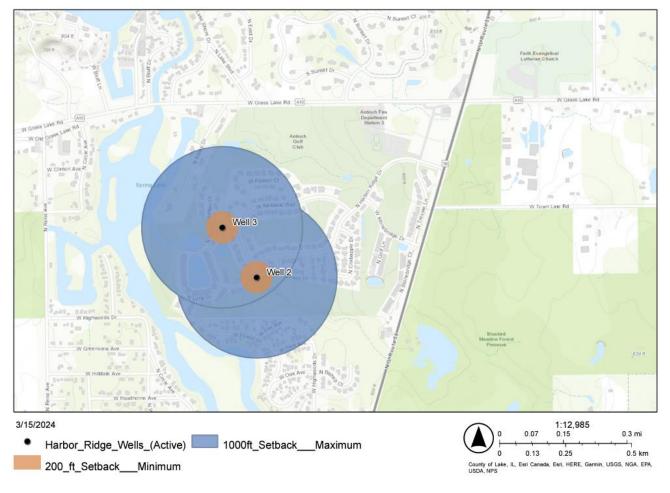
Highlighted value indicates finished water concentration exceeds Primary MCL for parameter. In all cases, treatment is in place to reduce concentration below the MCL, and routine monitoring is required.

Highlighted value indicates finished water concentration exceeds Secondary MCL for parameter. In some cases, treatment is in place to reduce concentration below the MCL, and routine monitoring is recommended.

Highlighted value indicates finished water concentration for parameter that may be approaching Primary or Secondary MCL or may cause water quality issues. In some cases, treatment is in place to reduce concentration below the MCL, and routine monitoring is recommended.

3.6 Identification of Potential Sources of Contamination to the Source Water

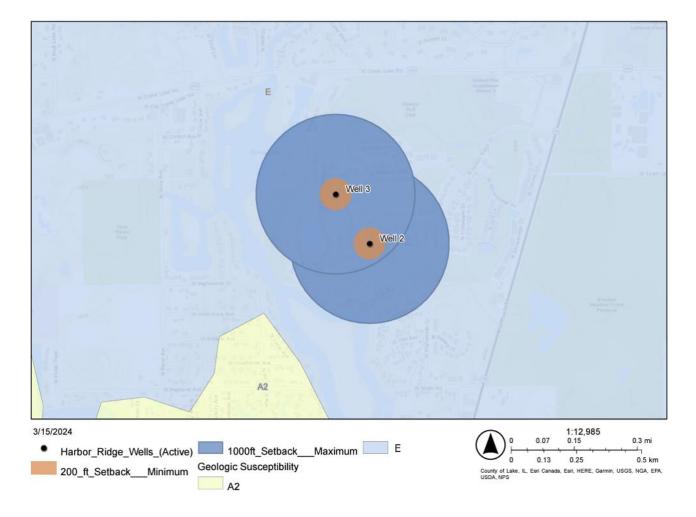
To identify all potential sources of contamination to the source water, both land use contamination and point source contamination were investigated. The proximity of the wells to shallow water bodies was also considered.


The point sources were identified using several hazardous chemical inventory databases. A list of a select number of databases used to determine potential sources of contamination to the System's wells are as follows:

- Agency Facility Inventory and Information Search System (AFIIS) (IEPA)
- Environmental Compliance and History Online (ECHO) (USEPA)
- Tier 2 Hazardous Chemical Database (IEMA Tier 2) (IEMA)
- Illinois Underground Storage Tank Database (IUST) (ISFM)
- Leaking Underground Storage Tank Database (LUST) (IEPA)
- Site Remediation Program Database (SRP) (IEPA)
- National Priority List (NPL)
- Comprehensive Environmental Response, Compensation and Liability Information System (CERCLIS)
- Resource Conservation and Recovery Act Generator List (RCRA LQG)
- Emergency Response Notification System (ERNS)
- Facility Response Plan (FRP)
- FEMA Underground Storage Tank Listing (FEMA UST)
- Clean Construction or Demolition Debris (CCDD)
- Above Ground Storage Tank (AST)

An environmental consultant, A3 Environmental, was engaged to assist in identifying potential sources of contamination within the maximum setback zone of each well. The consultant performed a search of publicly available information from environmental contamination databases belonging to federal, state, tribal, and local sources. These databases contain site specific history and details that aid in identifying if the contaminant is a threat to the source water.

In addition to these databases, the location of oil and gas pipelines and railroad lines were also evaluated. Sites within the well's 200- and 1,000-foot setback zones were considered as possible threats to groundwater quality. As shown in Exhibit 3-3, there were no point source contaminants identified for either well within the setback zones of the well.


Exhibit 3-3: Map of Potential Sources of Contamination

3.7 Analysis of the Source Water's Susceptibility to Contamination

The wells operated by the Harbor Ridge CWS are shallow glacial overburden aquifers in the Quaternary geologic system. Shallow wells are typically more vulnerable to surface contamination than deep wells because of their lack of bedrock cover due to their proximity to the surface.

Exhibit 3-4 shows the map of geologic susceptibility along with Well 2 and Well 3. The wells are located in an area with a geologic susceptibility rating of E, characterized as impermeable silty or clayey till at least 50-feet thick with no evidence of interbedded sand and gravel. The system's wells are shallow bedrock wells, so they are somewhat susceptible to contamination due to their proximity to the surface, but because they are in the E rating, their susceptibility is somewhat decreased. Therefore, the geologic susceptibility to contamination of the groundwater pumped by these wells is considered moderate.

Exhibit 3-4: Groundwater Susceptibility

3.8 Explanation of the Community Water Supply's Efforts to Protect its Source Water

- The Illinois Environmental Protection Act provides a minimum protection zone of 200 feet for Well 2 and Well 3. These minimum protection zones are regulated by the Illinois EPA.
- The System's SCADA system monitors each well 24/7.
- The Harbor Ridge CWS maintains the Emergency Response Plan as contingency planning documents to ensure that, through emergency preparedness, the community minimizes its risk of being without safe and adequate drinking water.
- The following regulations, which contribute to source water protection are currently active in the System:

1. Minimum Setback Zones (200 and 400 feet, as designated by Illinois EPA) (415 ILCS 5/14.1 - 14.3)

2. Well Construction and Pump Installation (77 ILL ADMIN CODE PART 915, 920 and 925)

3. Backflow and Cross-Connection Programs Required (Illinois Plumbing Code, 77Ill. Adm. Code 890)

4. Lake County Watershed Development Ordinance (<u>Lake-County-Watershed-</u> Development-Ordinance-July-11-2023-PDF (lakecountyil.gov)

5. Water Regulations (Lake County Code of Ordinances, Title V: Public Works and Solid Waste, Chapter 52 – Water Regulations)

SECTION 4: SOURCE WATER PROTECTION PLAN OBJECTIVES

This section presents the Harbor Ridge CWS's adherence to the requirements of Section 604.320 Source Water Protection Plan Objectives, which are:

The source water protection plan must contain a list of the community water supply's objectives for protecting source water. These objectives can include meeting the requirements of any of the Sections in this Subpart, including developing a vision statement or performing a source water assessment. Objectives may also address the specific problems or issues identified in the source water assessment and should consider current and potential future issues.

4.1 Identified Concerns

The following concerns regarding the Harbor Ridge CWS's source water were identified based on the source water assessment.

- Impacts of existing and potential future contamination on the Harbor Ridge CWS's source water.
- Impacts of source water contamination on the Harbor Ridge CWS's finished drinking water quality.
- Implications of removing existing and potential future contamination from the Harbor Ridge CWS's source water to meet drinking water standards.
- Identifying and implementing effective programs and activities for protecting the Harbor Ridge CWS's source water.

4.2 Objectives

Given the identified concerns, the Harbor Ridge CWS developed the following SWPP objectives. These objectives provide a framework for the Harbor Ridge CWS's source water protection activities. The specific activities that align with these objectives are outlined in Section 5 of this Plan.

- I. Source Water Characterization / Protection Area Delineation
 - A. Characterize the aquifers used by Harbor Ridge CWS as the source of water supply by identifying groundwater flow patterns, estimating hydraulic properties, and analyzing groundwater quality sampling results.

- II. Potential Contaminant Source and Land Use Inventories
 - A. Use local, state, and federal data resources to identify the location and nature of potential sources of groundwater contamination and associated land uses within the source water protection areas of Harbor Ridge CWS water supply wells.
- III. Source Water Protection Management
 - A. Public Engagement Engage the community at-large and provide additional opportunities for source water protection stakeholders.
 - B. Source Water Monitoring Continue to monitor the quality of source water as needed to characterize constituents and ensure the safety of drinking water, always seeking to identify potential future threats to source water and finished water.
 - C. Contingency Planning Maintain and update existing emergency response plans, particularly as it pertains to groundwater contamination.
 - D. Existing Regulatory Leverage existing local, state, and federal regulations / programs that include source water protection components and incorporate into Harbor Ridge CWS's source water protection program.
 - E. New Regulatory Consider additional programs that will contribute to protecting source water and incorporate those that are applicable into Harbor Ridge CWS's source water protection program.
 - F. Planning Actively review, update, and improve all aspects of Harbor Ridge CWS's Source Water Protection Plan.

SECTION 5: ACTION PLAN

This section presents the City's adherence to the requirements of Section 604.325 Action Plan, which are:

In the action plan, the community water supply must identify the actions needed to achieve the community water supply's objectives determined under Section 604.320. The action plan must include the following:

- a) descriptions of all projects, programs, and activities developed by the community water supply to meet the objectives listed in Section 604.320;
- b) the community water supply's schedule for implementing projects, programs and activities;
- c) an identification of the necessary resources to implement the plan; and
- *d)* an identification of the potential problems with and obstacles to implementing the plan.

5.1 Projects, Programs, and Activities to Meet Objectives

To meet its Source Water Protection Objectives, the City will continue its current initiatives (as described in Section 3.8), as well as implement the projects, programs, and activities identified below. The entire Action Plan including objectives; projects, programs, and activities; schedule; necessary resources; and potential problems is presented in Table No. 5-1.

5.2 Schedule for Implementing Projects, Programs, and Activities

The schedule for implementing the projects, programs, and activities of the City's Source Water Protection Program is presented in Table No. 5-1.

5.3 Identification of Necessary Resources to Implement the Plan

The resources necessary for implementation of the plan and the specific projects, programs, and activities requiring these resources are identified in the Action Plan presented in Table No. 5-1.

5.4 Identification of Potential Problems and Obstacles in Implementing the Plan

The potential problems and obstacles in implementing the plan and the specific projects, programs, and activities requiring these resources are identified in the Action Plan presented in Table No. 5-1.

	PRAIRIE PATH WATER COMPANY - HARBOR RIDGE CWS SOURCE WATER PROTECTION PLAN (July 2024)						
Category	Objective	Projects, Programs, and Activities	Schedule	Necessary Resources	Potential Problems		
ection		1. Review delineated maximum setback and recharge zones refine/update as necessary.	July 2029	Staff time	Limited data available		
I. Source Water acterization / Protection Area Delineation	A. Characterize the aquifers used by Harbor Ridge CWS as the source of water supply by identifying groundwater flow patterns, estimating hydraulic properties, and analyzing	2. Collect static and pumping water levels along with well pumping rates; Collect well performance data during well rehabilitation and testing. Analyze these data for anomalies and trends.	Annually	Staff time	Other priorities		
Char	groundwater quality sampling results.	3. Designate source water protection areas for each of PPWC's water supply wells. For example: minimum setback zone (200 or 400 feet), maximum setback zone (1,000 feet), or recharge areas.	Completed	N/A	N/A		
II. Potential ontaminant Source and Land Use Inventories	A. Use local, state, and federal data resources to identify the location and nature of	1. PPWC staff conduct visual surveys of activities within the minimum and maximum setback zones of water supply wells.	Monthly	Staff time	None		
Poten minant d Land vento	potential sources of groundwater contamination and associated land uses within the source water protection areas of	2. Coordinate with jurisdictional authorities to monitor land use changes within the protection areas.	July 2029	Staff time	Cooperation of jurisdictions		
II. Contai anc In	Harbor Ridge CWS water supply wells.	3. Establish program to engage local Fire Protection Authorities.	July 2029	Staff Time	Interest of jurisdictions		
	A. Public Engagement - Engage the community at-large and provide additional opportunities for source water protection stakeholders.	 Public Awareness - Develop and distribute information regarding PPWC source water, including: Newsletters Annual Water Quality Report Bill stuffers / Specialty mailers 	Annually	Staff time	None -WQ Report must be updated for compliance		
lagement		2. Public Education - Educate community and property owners on how they can participate in PPWC's source water protection efforts.	July 2029	Staff time	Stakeholder interest		
otection Mar		3. Public Involvement - Consider creating local source water protection group to promote communication and collaboration on all matters pertaining to source water protection.	July 2029	Staff time	Stakeholder interest		
III. Source Water Pro	B. Source Water Monitoring - Continue to monitor the quality of source water as needed to characterize constituents and ensure the safety of drinking water, always seeking to identify potential future threats to source water and finished water.	1. Monitor known and emerging contaminants, including the collection of source water samples for current and emerging contaminants and the analysis of these data for anomalies and trends.	As required	Staff time	None - Must be completed for compliance		
	C. Contingency Planning - Maintain and update existing emergency response plans, particularly as it pertains to groundwater contamination.	1. Update Emergency Response Plan (ERP)	Annually	Staff time	Competing priorities		

	PRAIRIE PATH WATER COMPANY - HARBOR RIDGE CWS SOURCE WATER PROTECTION PLAN page 2 (July 2024)						
		1. Minimum Setback Zones (200 and 400 feet, as designated by Illinois EPA) (415 ILCS 5/14.1 - 14.3)	Ongoing	Staff time	None - State regulation		
	D. Existing Regulatory - Leverage existing	2. Well Construction and Pump Installation (77 ILL ADMIN CODE PART 915, 920 and 925)	Ongoing	Staff time	None - State regulation		
nued	local, state, and federal regulations / programs that include source water protection	3. Backflow and Cross-Connection Programs Required (Illinois Plumbing Code, 77 Ill. Adm. Code 890)	Ongoing	Staff time	None - State regulation		
(continued)	components and incorporate into Harbor Ridge CWS's source water protection program.	4. Lake County Watershed Development Ordinance (Lake-County-Watershed-Development-Ordinance- July-11-2023-PDF (lakecountyil.gov)	Ongoing	Staff time	None - County regulation		
sment		5. Water Regulations (Lake County Code of Ordinances, Title V: Public Works and Solid Waste, Chapter 52 – Water Regulations)	Ongoing	Staff time	None - County regulation		
ction Manage	E. New Regulatory - Consider additional programs that will contribute to protecting source water and incorporate those that are applicable into Harbor Ridge CWS's source water protection program.	1. Overlay Ordinance establishing a 1,000-foot maximum setback zone.	July 2029	Staff time	Cooperation of local jurisdiction		
		2. Signage at wells and water treatment facilities	July 2029	Staff time, cost of signs	None		
rotec		3. Land acquisition / Conservation easements	July 2029	Staff time, funding	Availability of land		
e Water P		1. Participation in the Local Emergency Planning Committee (LEPC) or other local water resources planning agencies.	July 2029	Staff time	Competing priorities		
III. Source	F. Planning - Actively review, update, and improve all aspects of Harbor Ridge CWS's	2. Support County Water Sustainability efforts (if applicable).	July 2029	Staff time	Existence of such programs		
	Source Water Protection Plan.	3. Periodic review and updating of the Source Water Protection Plan Vision statement, Source Water Assessment, Objectives, and Action Plan with input from external stakeholders.	July 2029	Staff time / Consultant	None -required for compliance		

PRAIRIE PATH WATER COMPANY - HARBOR RIDGE CWS SOURCE WATER PROTECTION PLAN page 2 (July 2024)

APPENDIX A

Illinois Administrative Code Title 35, Subpart 604, Subpart C -Source Water Protection Plan

EE1

TITLE 35: ENVIRONMENTAL PROTECTION SUBTITLE F: PUBLIC WATER SUPPLIES CHAPTER I: POLLUTION CONTROL BOARD

PART 604 DESIGN, OPERATION AND MAINTENANCE CRITERIA

SUBPART C: SOURCE WATER PROTECTION PLAN

Section 604.300 Purpose

The purpose of the following requirements is to facilitate protection of source water quality and quantity.

Section 604.305 Source Water Protection Plan Requirement and Contents

Each community water supply that treats surface or groundwater as a primary or emergency supply of water must develop a source water protection plan that contains the following minimum elements:

- a) a vision statement as set forth in Section 604.310;
- b) a source water assessment as set forth in Section 604.315;
- c) the objectives set forth in Section 604.320; and
- d) an action plan as set forth in Section 604.325.

Section 604.310 Vision Statement

The vision statement must include the following:

- a) the community water supply's policy and commitment to protecting source water;
- b) an explanation of the community water supply's resources to protect source water;
- c) an explanation of the barriers to protecting source water; and
- d) the names of the individuals who developed the vision statement.

Section 604.315 Source Water Assessment

- a) The source water assessment must contain the following information:
 - 1) statement of the importance of the source water;

- 2) a list of water supplies that obtain water from this community water supply;
- 3) delineation of all sources of water used by the community water supply, including:
 - A) for surface water, description of the watershed, map of the watershed, and intake locations;
 - B) for groundwater, the well identification number, well description, well status and well depth; a description of setback zones, and a description of the aquifer for each well;
- 4) a report on the quality of the source water for all sources of water delineated in subsection (a)(3), including:
 - A) when and where samples used to determine the quality of the source water were taken. These samples must be tested by a certified laboratory; and
 - B) the certified laboratory's results;
- 5) a report on the quality of the finished water;
- 6) identification of potential sources of contamination to the source water;
- 7) analysis of the source water's susceptibility to contamination; and
- 8) explanation of the community water supply's efforts to protect its source water.
- b) Upon request, the Agency will provide technical assistance to a community water supply in conducting the source water assessment.
- b) A community water supply may use a Source Water Assessment Program Fact Sheet prepared by the Agency to fulfill the requirements of this Section.

Section 604.320 Source Water Protection Plan Objectives

The source water protection plan must contain a list of the community water supply's objectives for protecting source water. These objectives can include meeting the requirements of any of the Sections in this Subpart, including developing a vision statement or performing a source water

assessment. Objectives may also address the specific problems or issues identified in the source water assessment and should consider current and potential future issues.

Section 604.325 Action Plan

In the action plan, the community water supply must identify the actions needed to achieve the community water supply's objectives determined under Section 604.320. The action plan must include the following:

- a) descriptions of all projects, programs, and activities developed by the community water supply to meet the objectives listed in Section 604.320;
- c) the community water supply's schedule for implementing projects, programs and activities;
- c) an identification of the necessary resources to implement the plan; and
- d) an identification of the potential problems with and obstacles to implementing the plan.

Section 604.330 Submission

- a) A community water supply that first commenced construction after July 26, 2019, must develop and submit a source water protection plan simultaneously with the construction permit application.
- b) A community water supply in existence as of July 26, 2019, must develop and submit to the Agency for approval a source water protection plan within the following time frame after July 26, 2019:
 - 1) within 3 years, for a community water supply serving a population greater than 50,000 persons;
 - 2) within 4 years, for a community water supply serving a population of greater than 3,000 but less than or equal to 49,999 persons; or
 - 3) within 5 years, for a community water supply serving a population of less than or equal to 2,999 persons.
- d) An existing community water supply that anticipates using a new source of water for its supply must develop and submit a revised source water protection plan simultaneously with the construction permit application.

Section 604.335 Agency Approval

The Agency, not later than 45 days after the receipt of the source water protection plan, will either approve or disapprove the plan. If the Agency takes no action within the 45 days, the community water supply may deem the plan approved. A community water supply may waive the requirement that the Agency take an action within the 45 days by so advising the Agency in writing.

Section 604.340 Evaluation and Revision

The community water supply must review, and revise as necessary, its source water protection plan no less frequently than every five years. If the community water supply revises its source water protection plan, it must submit the plan to the Agency for approval under Section 604.335.

APPENDIX B

Well Information

$_{\tt Page \ 1}$ Illinois state geological survey

Noncommunity - Public Water Well	Тор	Bottom
black top soil	0	2
clay	2	92
silt & fine sand	92	115
coarse sand to small gravel	115	121
Total Depth Casing: 10" STEEL 40# from -2' to 115' Screen: 6' of 10" diameter .03 slot Grout: CEMENT from 10 to 30. Water from sand & gravel at 115' to 121'. Static level 28' below casing top which is 2' above GL Pumping level 85' when pumping at 304 gpm for 8 hours Permanent pump installed at 100' on , with a capacity of 250 gpm Remarks: Harbor Ridge Utilities Public Wtr Sply		121
Owner Address: Antioch Golf Club Rt. #59 Antioch, IL Address of well: Harbor Rdige Dr. Location source: Location from permit		
Permit Date: March 30, 1992 Permit #: E92	0375	

COMPANY	Buffington, Gree	gory D.	
FARM	Antioch Golf Ver	nture	
DATE DRIL	LED May 13, 1992	NO. 2	
ELEVATION	760GL	COUNTY NO. 38922	
LOCATION LATITUDE	840'S 40'E NW/c 42.442094	LONGITUDE -88.120511	
COUNTY	Lake	API 120973892200	30 - 46N - 10E

Page 1 ILLINOIS STATE GEOLOGICAL SURVEY

Municipal Water Supply	Тор	Bottom
SS #68759 (0'-890')	0	(
black topsoil	0	1
brown clay, rocks and fill	1	6
brownish clay	6	10
gray hard gravel embedded in clay	10	30
gray very sticky clay	30	92
sandy clay w/gravel seams	92	105
very fine sand	105	130
gray pure silt	130	203
very hard limestone	203	205
very fractured limestone w/silts & clays	205	208
rough hard limestone/seams white chert	208	281
greenish & gray soft shaley limestone	281	295
light brown limestone	295	321
gray & brown soft limestone	321	326
hard white limestone, some shale	326	420
hard gray limestone	420	479
multi-colored limestone	479	648
sandstone-white & pinkish	648	859
conglomerate shale-limestone & chert	859	890
Interpretation by: Hansel, Ardith K on 28-SEP-00 samples don't match driller's log	very well	
dm silty clay loam to loam calc yllsh brn to lt oli brn 10YR5/6-2.5Y5/6	ve 0	
dm silty clay loam to loam calc yellowish brown	5	1

Permit Date: December 14, 1994

Permit #:

COMPANY	Buffington, G.	
FARM	Antioch Golf Club	
DATE DRIL	,LED September 15, 1995	NO. 3
ELEVATION	1 797 COUN	TY NO. 41924
LOCATION	230'S 1650'E NW/c	
LATITUDE	42.443825 LONGITUDE	-88.114558
COUNTY	Lake API 1	20974192400

30 - 46N - 10E

Page 2 ILLINOIS STATE GEOLOGICAL SURVEY

10YR5/4		
dm silty clay loam to loam calc brown to dark brown 10YR4/3	10	20
no sample	20	25
dm silty clay loam to loam very gravelly calc brown t dark brown 10YR4/3	o 25	60
dm silty clay loam to silt loam little gravel calc brown 10YR5/3	60	65
dm lake? silty clay loam to silt loam gravelly calc brown 10YR5/3	65	70
dm lake? silty clay loam to silt loam little gravel ca brown 10YR5/3	ilc 70	90
dm loam very gravelly calc grayish brown 10YR5/2	90	100
dm silt to sandy loam abndnt si & f sd,v gvly calc grayish brown 10YR5/2	100	115
dm wood frags silt to sandy loam si & f sd,sdy,gritty calc grayish brown 10YR5/2	115	170
no sample	170	175
dm silt to sandy loam calc grayish brown 10YR5/2	175	200
dm silt loam very gravelly calc brown to grayish brow 10YR5/3-5/2	m 200	205
no sample	205	210
dolomite fragments	210	215
bedrock contact	230	
otal Depth asing: 16" STEEL 62# from 0' to 206' 12" STEEL #49 from -2' to 507'		890
rout: NEAT CEMENT from 8 to 507.		
ize hole below casing: 12"		
	I	

 Buffington, G.
 Antioch Golf Clu
 3

 COUNTY
 Lake
 API 120974192400
 30 - 46N - 10E

Page 3 ILLINOIS STATE GEOLOGICAL SURVEY

Water from sandstone at 648' to 859'. Static level 330' below casing top which is 2' above GL Pumping level 550' when pumping at 300 gpm for 24 hours		
Sample set # 68759 (0' - 890') Received: December 22, 19	999	
Owner Address: ,		
Address of well: Harbor Ridge, IL		
Add'l loc. info: Subdivision: Harbor Ridge		
Location source: Location from the driller		

 Buffington, G.
 Antioch Golf Clu
 3

 COUNTY
 Lake
 API 120974192400
 30 - 46N - 10E

APPENDIX C

Representative Source Water Quality Analytical Lab Reports

Harbor Ridge Water System

		All res	ults reported	per liter(ng/L)		
Sampling Location	Date Sampled	PFOS	PFOA	Combined PFOS + PFOA	EPA Health Advisory Level	Result Below Health Advisory Level?
Entry Point Well 2	7/22/2020	ND	ND	ND	70	Y
Entry Point Well 3	7/22/2020	ND	ND	ND	70	Y

- **PFOS** Perfluorooctane Sulfonate
- **PFOA** Perfluorooctanoic Acid
- Health Advisory Level (HAL) To provide Americans, including the most sensitive populations, with a margin of
 protection from a lifetime of exposure to PFOA and PFOS from drinking water, EPA established the health advisory
 levels at 70 parts per trillion.
- **Ng/L** Nanograms per liter(ng/L) which equals Parts per trillion (ppt) One part per trillion corresponds to one minute in 2,000,000 years, or a single penny in \$10,000,000,000.
- ND (No Detect) Laboratory analysis indicates that the constituent is not present. 2.0 ng/L is the minimum level the lab is reporting a detection for these parameters. The ND (No Detect) represented in the table is indicating there was no detection.

Chem/Rad Sample Results

Return		Water System No. :	IL097562	0		Fed	eral Type :	С	
Links		Water System Name :	PRAIRIE	PATH WAT	ER CO	MPANY- Stat	te Type :	С	
		-	madon	RIDGE				GW	
C1 /D 1		Principal County Served : Status :	LAKE A				nary Source : ivity Date :	01-01-1978	
Chem/Rad		Lab Sample No. :	EG04282-	-01			lection Date :	07-21-2021	
<u>Samples</u>		is list displays sample/res			robial				~
Amolyta		OR) associated to the sele							~
<u>Analyte</u> List	141	ON) associated to the sele		ipie. Resul	101		mary tes are not	t merudea.	
				Loss				Monitoring	Monitoring
Water	Analyte	Analyte Name	Method	Less than	Level	Reporting	Concentration	Period	Period End
System	Code	Analyte Ivallie	Code	Indicator	Туре	Level	level	Begin Date	Date
Detail	1005	ARSENIC	200.8	Y	MRL	1 UG/L		01-01-2020	12-31-2022
		BARIUM	200.8	1	WINL	0	65 UG/L	01-01-2020	12-31-2022
Water		CADMIUM	200.8	Y	MRL	1 UG/L	00 0011	01-01-2020	12-31-2022
<u>Systems</u>		CHLORIDE	300.0			0	14 MG/L	01-01-2020	12-31-2022
~		CHROMIUM	200.8	Y	MRL	4 UG/L		01-01-2020	12-31-2022
Water		CYANIDE	335.4	Y	MRL	0.2 MG/L		01-01-2020	12-31-2022
<u>System</u>	1025	FLUORIDE	4500F-C			0	0.99 MG/L	01-01-2020	12-31-2022
<u>Search</u>	1028	IRON	200.7			0	0.17 MG/L	01-01-2020	12-31-2022
	1031	MAGNESIUM	200.7			0	19 MG/L		
<u>County</u>	1032	MANGANESE	200.8			0	4.4 UG/L	01-01-2020	12-31-2022
<u>Map</u>	1035	MERCURY	200.8	Y	MRL	0.2 UG/L		01-01-2020	12-31-2022
	1036	NICKEL	200.8	Y	MRL	5 UG/L		01-01-2020	12-31-2022
<u>Glossary</u>		SELENIUM	200.8	Y	MRL	1 UG/L		01-01-2020	12-31-2022
		SODIUM	200.7			0	29 MG/L	01-01-2020	12-31-2022
		SULFATE	300.0			0	26 MG/L	01-01-2020	12-31-2022
	1074	ANTIMONY, TOTAL	200.8	Y	MRL	3 UG/L		01-01-2020	12-31-2022
		BERYLLIUM, TOTAL	200.8	Y	MRL	1 UG/L		01-01-2020	12-31-2022
		THALLIUM, TOTAL ZINC	200.8	Y	MRL	1 UG/L	13 UG/L	01-01-2020	12-31-2022
		HARDNESS, TOTAL (AS	200.8			0	13 UG/L	01-01-2020	12-31-2022
		CACO3)	2340B			0	240 MG/L	01-01-2020	12-31-2022
	1919	CALCIUM	200.7			0	63 MG/L	01-01-2020	12-31-2022
	1927	ALKALINITY, TOTAL	2320B			0	250 MG/L	01-01-2020	12-31-2022
		TDS	2540C			0	350 MG/L	01-01-2020	12-31-2022
	//51	METHYL TERT-BUTYL ETHER	524.2	Y	MRL	0.5 UG/L			
	2378	1,2,4- TRICHLOROBENZENE	524.2	Y	MRL	0.5 UG/L		01-01-2020	12-31-2022
	2380	CIS-1,2- DICHLOROETHYLENE	524.2	Y	MRL	0.5 UG/L		01-01-2020	12-31-2022
	2955	XYLENES, TOTAL	524.2	Y	MRL	0.5 UG/L		01-01-2020	12-31-2022
		DICHLOROMETHANE	524.2	Y	MRL	0.5 UG/L		01-01-2020	12-31-2022
		O-DICHLOROBENZENE	524.2	Y	MRL	0.5 UG/L		01-01-2020	12-31-2022
		P-DICHLOROBENZENE	524.2	Y	MRL	0.5 UG/L		01-01-2020	12-31-2022
		VINYL CHLORIDE	524.2	Y	MRL	0.5 UG/L		01-01-2020	12-31-2022
	2977	1,1-DICHLOROETHYLENE	524.2	Y	MRL	0.5 UG/L		01-01-2020	12-31-2022
		TRANS-1,2- DICHLOROETHYLENE	524.2	Y	MRL	0.5 UG/L		01-01-2020	12-31-2022
	2980	1,2-DICHLOROETHANE	524.2	Y	MRL	0.5 UG/L		01-01-2020	12-31-2022
l	2981	1,1,1-TRICHLOROETHANE	524.2	Y	MRL	0.5 UG/L		01-01-2020	12-31-2022

https://water.epa.state.il.us/dww/JSP/NonTcrSampleResults.jsp?sample_number=EG04282-01&collection_date=07-21-2021&tinwsys_is_number=717... 1/2

2982	CARBON TETRACHLORIDE	524.2	Y	MRL	0.5 UG/L	01-01-2020	12-31-2022
2983	1,2-DICHLOROPROPANE	524.2	Y	MRL	0.5 UG/L	01-01-2020	12-31-2022
2984	TRICHLOROETHYLENE	524.2	Y	MRL	0.5 UG/L	01-01-2020	12-31-2022
2985	1,1,2-TRICHLOROETHANE	524.2	Y	MRL	0.5 UG/L	01-01-2020	12-31-2022
2987	TETRACHLOROETHYLENE	524.2	Y	MRL	0.5 UG/L	01-01-2020	12-31-2022
2989	CHLOROBENZENE	524.2	Y	MRL	0.5 UG/L	01-01-2020	12-31-2022
2990	BENZENE	524.2	Y	MRL	0.5 UG/L	01-01-2020	12-31-2022
2991	TOLUENE	524.2	Y	MRL	0.5 UG/L	01-01-2020	12-31-2022
2992	ETHYLBENZENE	524.2	Y	MRL	0.5 UG/L	01-01-2020	12-31-2022
2996	STYRENE	524.2	Y	MRL	0.5 UG/L	01-01-2020	12-31-2022

Chem/Rad Sample Results

Return		Water System No. :	IL097562	0		Fod	eral Type :	С	
Links		Water System Name :		PATH WAT	ER CO	ADANIX	te Type :	C C	
		-	HARBOR	RIDGE					
		Principal County Served :					nary Source :	GW 01-01-1978	
Chem/Rad		Status : Lab Sample No. :	A 8073472-	01			ivity Date : lection Date :	07-18-2018	
<u>Samples</u>									
A = 1= =4 =		nis list displays sample/res OR) associated to the sele							~
<u>Analyte</u>	1 V1	OK) associated to the sele	cieu saii	ipie. Resul	118 101		Analytes are no	t metudeu.	
List			1	т				M. //	78. /17
Water	Analyte	Analyte Name	Method	Less than	Level	Reporting	Concentration	Period	Monitoring Period End
System	Code	Analyte Ivallie	Code	Indicator	Туре	Level	level	Begin Date	Date
Detail	1005	ARSENIC	200.8	Inuicator		0	1.3 UG/L	01-01-2017	12-31-2019
<u></u>		BARIUM	200.8			0	55 UG/L	01-01-2017	12-31-2019
Water	1010	CADMIUM	200.8	Y	MRL	1 UG/L	55 00/L	01-01-2017	12-31-2019
<u>Systems</u>	1012	CHLORIDE	300.0			0	14 MG/L	01-01-2017	12-31-2019
<i></i>	1020	CHROMIUM	200.8	Y	MRL	5 UG/L		01-01-2017	12-31-2019
Water	1024	CYANIDE	335.4	Y	MRL	0.2 MG/L		01-01-2017	12-31-2019
<u>System</u>	1025	FLUORIDE	4500F-C			0	0.931 MG/L	01-01-2017	12-31-2019
Search	1028	IRON	200.7			0	0.65 MG/L	01-01-2017	12-31-2019
	1031	MAGNESIUM	200.7			0	41 MG/L		
<u>County</u>	1032	MANGANESE	200.8			0	7.3 UG/L	01-01-2017	12-31-2019
<u>Map</u>	1035	MERCURY	200.8	Y	MRL	0.2 UG/L		01-01-2017	12-31-2019
	1036	NICKEL	200.8	Y	MRL	5 UG/L		01-01-2017	12-31-2019
<u>Glossary</u>	1045	SELENIUM	200.8	Y	MRL	2 UG/L		01-01-2017	12-31-2019
		SODIUM	200.7			0	39 MG/L	01-01-2017	12-31-2019
	1055	SULFATE	300.0			0	63 MG/L	01-01-2017	12-31-2019
	1074	ANTIMONY, TOTAL	200.8	Y	MRL	3 UG/L		01-01-2017	12-31-2019
·		BERYLLIUM, TOTAL	200.8	Y Y	MRL	1 UG/L		01-01-2017	12-31-2019
	1085 1095	THALLIUM, TOTAL ZINC	200.8 200.8	ľ	MRL	2 UG/L 0	17 UG/L	01-01-2017 01-01-2017	12-31-2019 12-31-2019
		HARDNESS, TOTAL (AS				0			
	1915	CACO3)	2340B			0	270 MG/L	01-01-2017	12-31-2019
	1919	CALCIUM	200.7	Ν		0	41 MG/L	01-01-2017	12-31-2019
	1927	ALKALINITY, TOTAL	2320B			0	290 MG/L	01-01-2017	12-31-2019
	1930	TDS	2540C			0	300 MG/L	01-01-2017	12-31-2019
	2251	METHYL TERT-BUTYL ETHER	524.2	Y	MRL	0.5 UG/L			
	2378	1,2,4- TRICHLOROBENZENE	524.2	Y	MRL	0.5 UG/L		01-01-2017	12-31-2019
	2380	CIS-1,2- DICHLOROETHYLENE	524.2	Y	MRL	0.5 UG/L		01-01-2017	12-31-2019
	2955	XYLENES, TOTAL	524.2	Y	MRL	0.5 UG/L		01-01-2017	12-31-2019
[2964	DICHLOROMETHANE	524.2	Y	MRL	0.5 UG/L		01-01-2017	12-31-2019
	2968	O-DICHLOROBENZENE	524.2	Y	MRL	0.5 UG/L		01-01-2017	12-31-2019
		P-DICHLOROBENZENE	524.2	Y	MRL	0.5 UG/L		01-01-2017	12-31-2019
	2976	VINYL CHLORIDE	524.2	Y	MRL	0.5 UG/L		01-01-2017	12-31-2019
	2977	1,1-DICHLOROETHYLENE	524.2	Y	MRL	0.5 UG/L		01-01-2017	12-31-2019
	2979	TRANS-1,2- DICHLOROETHYLENE	524.2	Y	MRL	0.5 UG/L		01-01-2017	12-31-2019
	2980	1,2-DICHLOROETHANE	524.2	Y	MRL	0.5 UG/L		01-01-2017	12-31-2019
l	2981	1,1,1-TRICHLOROETHANE	524.2	Y	MRL	0.5 UG/L		01-01-2017	12-31-2019

https://water.epa.state.il.us/dww/JSP/NonTcrSampleResults.jsp?sample_number=8073472-01&collection_date=07-18-2018&tinwsys_is_number=7170... 1/2

2982	CARBON TETRACHLORIDE	524.2	Y	MRL	0.5 UG/L	01-01-2017	12-31-2019
2983	1,2-DICHLOROPROPANE	524.2	Y	MRL	0.5 UG/L	01-01-2017	12-31-2019
2984	TRICHLOROETHYLENE	524.2	Y	MRL	0.5 UG/L	01-01-2017	12-31-2019
2985	1,1,2-TRICHLOROETHANE	524.2	Y	MRL	0.5 UG/L	01-01-2017	12-31-2019
2987	TETRACHLOROETHYLENE	524.2	Y	MRL	0.5 UG/L	01-01-2017	12-31-2019
2989	CHLOROBENZENE	524.2	Y	MRL	0.5 UG/L	01-01-2017	12-31-2019
2990	BENZENE	524.2	Y	MRL	0.5 UG/L	01-01-2017	12-31-2019
2991	TOLUENE	524.2	Y	MRL	0.5 UG/L	01-01-2017	12-31-2019
2992	ETHYLBENZENE	524.2	Y	MRL	0.5 UG/L	01-01-2017	12-31-2019
2996	STYRENE	524.2	Y	MRL	0.5 UG/L	01-01-2017	12-31-2019

С

С

GW

01-01-1978

08-02-2017

Federal Type :

Primary Source :

Collection Date :

Activity Date :

State Type :

Drinking Water Branch

Chem/Rad Sample Results

IL0975620

17H0152-01 01

Α

PRAIRIE PATH WATER

COMPANY-HARBOR RIDGE

Return Links

Water System No. :

Lab Sample No. :

MOLYBDENUM.

TOTAL THALLIUM,

TOTAL VANADIUM.

TOTAL

ZINC

1084

1085

1088

1095

200.8

200.8

200.8

200.8

Status :

Water System Name :

Principal County Served

Chem/Rad Samples

Analyte List

System

System

Search

Map

Detail

This list displays sample/results of all non-microbial analytes (TSAANLYT.TYPE CODE <> MOR) associated to the selected sample. Results for Microbial Analytes are not included. Water Monitoring Monitoring Less Method Analyte Analyte Level Reporting Concentration **Period End** Period than Code Name Level level Code Type Date ndicato **Begin Date** Water MRL ALUMINUM 1002 200.8 Y 100 UG/L Systems NITROGEN-AMMONIA AS 350.1 0.443 MG/L 1003 Ν 0 Water (N)200.8 2.280 UG/L 1005 ARSENIC Ν 0 1010 BARIUM 200.8 Ν 0 54.000 UG/L 1015 CADMIUM 200.8 Y MRL 3 UG/L County 1020 CHROMIUM 200.8 Y MRL 5 UG/L 1022 COPPER, FREE 200.8 Y MRL 100 UG/L 1028 IRON 200.7 Ν 0 628.000 UG/L Glossary 1030 LEAD 200.8 Y MRL 5 UG/L 1031 MAGNESIUM 200.7 Ν 0 39400.000 UG/L 1032 MANGANESE 200.8 Y 15 UG/L MRL Y 0.06 UG/L 1035 MERCURY 245.1 MRL 1036 NICKEL 200.8 Y MRL 25 UG/L POTASSIUM 200.7 Y 1400 UG/L 1042 MRL 1045 SELENIUM Y 2 UG/L 200.8 MRL 1049 SILICA 200.7 Ν 0 26000.000 UG/L Y 200.8 10 UG/L 1050 SILVER MRL 1051 STRONTIUM 200.7 Ν 0 1220.000 UG/L 1052 SODIUM 200.7 Ν 0 31600.000 UG/L ANTIMONY. 1074 200.8 Y MRL 2 UG/L TOTAL BERYLLIUM, 1075 200.8 Y MRL 1 UG/L TOTAL BORON, TOTAL 0 269.000 UG/L 1079 200.7 Ν COBALT, 1081 200.8 Y 10 UG/L MRL TOTAL

MRL

MRL

MRL

MRL

20 UG/L

2 UG/L

5 UG/L

100 UG/L

Y

Y

Y

Y

1915	HARDNESS, TOTAL (AS CACO3)	200.7	Ν	0	258000.000 UG/L	
1919	CALCIUM	200.7	Ν	0	38500.000 UG/L	

Chem/Rad Sample Results

Return Links

<u>Chem/Rad</u> Samples

<u>Analyte</u> List

<u>Water</u> System Detail

<u>Water</u> Systems

<u>Water</u> <u>System</u> <u>Search</u>

<u>County</u> <u>Map</u>

Glossary

Water System No. :	IL0975620	Federal Type :	С
Water System Name :	PRAIRIE PATH WATER COMPANY-HARBOR RIDGE	State Type :	С
Principal County Serve	d _{LAKE}	Primary Source :	GW
Status : Lab Sample No. :	A 17H0152-02_01	Activity Date : Collection Date :	01-01-1978 08-02-2017

This list displays sample/results of all non-microbial analytes

(TSAANLYT.TYPE_CODE > MOR) associated to the selected sample. Results for Microbial Analytes are not included.

				T.					
	Analyte	Analyte	Method	Less	Level	Reporting	Concentration	Monitoring	
	Code	Name	Code	unan	Туре	Level	level	reriou	Period End
				Indicator		100 770 7		Begin Date	Date
		ALUMINUM	200.8	Y	MRL	100 UG/L			
	1003	NITROGEN- AMMONIA AS (N)	350.1	Ν		0	0.227 MG/L		
		ARSENIC	200.8	Y	MRL	1 UG/L			
		BARIUM	200.8	N		0	65.700 UG/L		
		CADMIUM	200.8	Y	MRL	3 UG/L			
		CHROMIUM	200.8	Y	MRL	5 UG/L			
		COPPER, FREE	200.8	Y	MRL	100 UG/L			
	-	IRON	200.7	N		0	161.000 UG/L		
<u>y</u> _		LEAD	200.8	Y	MRL	5 UG/L			
		MAGNESIUM	200.7	N		0	17200.000 UG/L		
		MANGANESE	200.8	Y	MRL	15 UG/L			
		MERCURY	245.1	Y	MRL	0.06 UG/L			
		NICKEL	200.8	Y	MRL	25 UG/L			
		POTASSIUM	200.7	N		0	9410.000 UG/L		
		SELENIUM	200.8	Y	MRL	2 UG/L			
		SILICA	200.7	Ν		0	8450.000 UG/L		
	-	SILVER	200.8	Y	MRL	10 UG/L			
	1051	STRONTIUM	200.7	Ν		0	6390.000 UG/L		
	1052	SODIUM	200.7	Ν		0	23100.000 UG/L		
		ANTIMONY, TOTAL	200.8	Y	MRL	2 UG/L			
	111/5	BERYLLIUM, TOTAL	200.8	Y	MRL	1 UG/L			
	1079	BORON, TOTAL	200.7	Ν		0	184.000 UG/L		
		COBALT, TOTAL	200.8	Y	MRL	10 UG/L			
	1/18/1	MOLYBDENUM, TOTAL	200.8	Y	MRL	20 UG/L			
		THALLIUM, TOTAL	200.8	Y	MRL	2 UG/L			
		VANADIUM, TOTAL	200.8	Y	MRL	5 UG/L			
	1095	ZINC	200.8	Y	MRL	100 UG/L			

19	915	HARDNESS, TOTAL (AS CACO3)	200.7	N	0	216000.000 UG/L	
19	919	CALCIUM	200.7	Ν	0	58100.000 UG/L	

Chem/Rad Sample Results

Return	Ē	Water System No. :	IL097562	0		Fed	eral Type :	С				
Links		Water System Name :	PRAIRIE	PATH WAT	ER CO	ADANIV	te Type :	C				
		-	HARBOR	R RIDGE								
C1 /D 1		Principal County Served : Status :	LAKE A				nary Source : ivity Date :	GW 01-01-1978				
Chem/Rad		Lab Sample No. :	5092252-	01			lection Date :	09-10-2015				
<u>Samples</u>				ults of all non-microbial analytes (TSAANLYT.TYPE CODE <>								
Apolyta		OR) associated to the sele							~			
<u>Analyte</u> List	141	ony associated to the sele	eted sun	ipie. Resul	101		mary tes are no	i merudea.				
				Less				Monitoring	Monitoring			
Water	Analyte	Analyte Name	Method	than		1 0	Concentration	Period	Period End			
System	Code		Code	Indicator	Туре	Level	level	Begin Date	Date			
Detail	1005	ARSENIC	200.8	IIIMICHIUI		0	1.4 UG/L	01-01-2014	12-31-2016			
		BARIUM	200.8			0	62 UG/L	01-01-2014	12-31-2016			
Water	1015	CADMIUM	200.8	Y	MRL	1 UG/L		01-01-2014	12-31-2016			
<u>Systems</u>	1020	CHROMIUM	200.8	Y	MRL	4 UG/L		01-01-2014	12-31-2016			
	1024	CYANIDE	4500CN-	Y	MRL	0.2 MG/L		01-01-2014	12-31-2016			
Water			С	I	WIKL							
<u>System</u>		FLUORIDE	4500F-C			0	1.04 MG/L	01-01-2014	12-31-2016			
Search	1028	IRON	200.7			0	0.28 MG/L	01-01-2014	12-31-2016			
	1032	MANGANESE	200.8			0	5.2 UG/L	01-01-2014	12-31-2016			
<u>County</u>	1035	MERCURY	200.8	Y	MRL	0.2 UG/L		01-01-2014	12-31-2016			
<u>Map</u>	1036	NICKEL	200.8	Y	MRL	5 UG/L		01-01-2014	12-31-2016			
		SELENIUM	200.8	Y	MRL	5 UG/L		01-01-2014	12-31-2016			
<u>Glossary</u>	1052	SODIUM	200.7			0	26 MG/L	01-01-2014	12-31-2016			
-		SULFATE	300.0	Y	MDT	0 3 UG/L	25 MG/L	01-01-2014	12-31-2016			
-	1074 1075	ANTIMONY, TOTAL BERYLLIUM, TOTAL	200.8 200.8	Y Y	MRL MRL	3 UG/L 1 UG/L		01-01-2014 01-01-2014	12-31-2016 12-31-2016			
-	1075	THALLIUM, TOTAL	200.8	Y Y	MRL	1 UG/L 1 UG/L		01-01-2014	12-31-2016			
-	1085	ZINC	200.8	Y Y	MRL	6 UG/L		01-01-2014	12-31-2016			
-		METHYL TERT-BUTYL						01-01-2014	12-51-2010			
	2251	ETHER	524.2	Y	MRL	0.5 UG/L						
	2378	1,2,4- TRICHLOROBENZENE	524.2	Y	MRL	0.5 UG/L		01-01-2014	12-31-2016			
-		CIS-1,2-										
	2380	DICHLOROETHYLENE	524.2	Y	MRL	0.5 UG/L		01-01-2014	12-31-2016			
-	2955	XYLENES, TOTAL	524.2	Y	MRL	0.5 UG/L		01-01-2014	12-31-2016			
	2964	DICHLOROMETHANE	524.2	Y	MRL	0.5 UG/L		01-01-2014	12-31-2016			
-	2968	O-DICHLOROBENZENE	524.2	Y	MRL	0.5 UG/L		01-01-2014	12-31-2016			
	2969	P-DICHLOROBENZENE	524.2	Y	MRL	0.5 UG/L		01-01-2014	12-31-2016			
-	2976	VINYL CHLORIDE	524.2	Y	MRL	0.5 UG/L		01-01-2014	12-31-2016			
	2977	1,1-DICHLOROETHYLENE	524.2	Y	MRL	0.5 UG/L		01-01-2014	12-31-2016			
	2979	TRANS-1,2- DICHLOROETHYLENE	524.2	Y	MRL	0.5 UG/L		01-01-2014	12-31-2016			
	2980	1,2-DICHLOROETHANE	524.2	Y	MRL	0.5 UG/L		01-01-2014	12-31-2016			
	2981	1,1,1-TRICHLOROETHANE	524.2	Y	MRL	0.5 UG/L		01-01-2014	12-31-2016			
	2982	CARBON TETRACHLORIDE	524.2	Y	MRL	0.5 UG/L		01-01-2014	12-31-2016			
-	2983	1,2-DICHLOROPROPANE	524.2	Y	MRL	0.5 UG/L		01-01-2014	12-31-2016			
	2984	TRICHLOROETHYLENE	524.2	Y	MRL	0.5 UG/L	<u> </u>	01-01-2014	12-31-2010			
-	2985	1,1,2-TRICHLOROETHANE	524.2	Y	MRL	0.5 UG/L		01-01-2014	12-31-2016			
-	2987	TETRACHLOROETHYLENE		Y	MRL	0.5 UG/L		01-01-2014	12-31-2016			
L	2,01		521.2	1		0.0 00/1		JI 01 2017	12 21 2010			

https://water.epa.state.il.us/dww/JSP/NonTcrSampleResults.jsp?sample_number=5092252-01&collection_date=09-10-2015&tinwsys_is_number=7170... 1/2

2989	CHLOROBENZENE	524.2	Y	MRL	0.5 UG/L	01-01-2014	12-31-2016
2990	BENZENE	524.2	Y	MRL	0.5 UG/L	01-01-2014	12-31-2016
2991	TOLUENE	524.2	Y	MRL	0.5 UG/L	01-01-2014	12-31-2016
2992	ETHYLBENZENE	524.2	Y	MRL	0.5 UG/L	01-01-2014	12-31-2016
2996	STYRENE	524.2	Y	MRL	0.5 UG/L	01-01-2014	12-31-2016

Chem/Rad Sample Results

Return		Water System No. : II	.0975620			Federal Type :	С	
Links			RAIRIE PATH ARBOR RIDO		MPAN	Y- State Type :	С	
Chem/Rad		Principal County Served : L. Status : A	AKE			Primary Source Activity Date : Collection Date	01-01-1978	
<u>Samples</u>	<u> </u>	his list displays sample/results		aicrobial a	naluta			
<u>Analyte</u> <u>List</u>		ssociated to the selected sample						()
<u>Water</u> System	Analyte Code	Analyte Name	Method Code	Less than Indicator	Level Type	Reporting Level lev	tration /el Begin Date	Monitoring Period End Date
Detail	2005	ENDRIN	525.2	Y	MRL	0.1 UG/L	01-01-2020	12-31-2022
		BHC-GAMMA	525.2	Y	MRL	0.1 UG/L	01-01-2020	12-31-2022
Water	2015	METHOXYCHLOR	525.2	Y	MRL	0.1 UG/L	01-01-2020	12-31-2022
<u>Systems</u>	2020	TOXAPHENE	525.2	Y	MRL	1 UG/L	01-01-2020	12-31-2022
	2021	CARBARYL	531.1	Y	MRL	2 UG/L		
Water	2022	METHOMYL	531.1	Y	MRL	0.5 UG/L		
<u>System</u>	2031	DALAPON	515.3	Y	MRL	5 UG/L	01-01-2020	12-31-2022
Search		DIQUAT	549.2	Y	MRL	2 UG/L	01-01-2020	12-31-2022
		DI(2-ETHYLHEXYL) ADIPATE	525.2	Y	MRL	0.6 UG/L	01-01-2020	12-31-2022
County	2036	OXAMYL	531.1	Y	MRL	2 UG/L	01-01-2020	12-31-2022
Map	2037	SIMAZINE	525.2	Y	MRL	0.35 UG/L	01-01-2020	12-31-2022
	2039	DI(2-ETHYLHEXYL) PHTHALAT	E 525.2	Y	MRL	1.8 UG/L	01-01-2020	12-31-2022
<u>Glossary</u>	2040	PICLORAM	515.3	Y	MRL	1 UG/L	01-01-2020	12-31-2022
	2041	DINOSEB	515.3	Y	MRL	1 UG/L	01-01-2020	12-31-2022
	2042	HEXACHLOROCYCLOPENTADII	ENE 525.2	Y	MRL	0.5 UG/L	01-01-2020	12-31-2022
	2046	CARBOFURAN	531.1	Y	MRL	0.9 UG/L	01-01-2020	12-31-2022
	2050	ATRAZINE	525.2	Y	MRL	0.3 UG/L	01-01-2020	12-31-2022
	2051	LASSO	525.2	Y	MRL	0.2 UG/L	01-01-2020	12-31-2022
	2065	HEPTACHLOR	525.2	Y	MRL	0.04 UG/L	01-01-2020	12-31-2022
	2066	3-HYDROXYCARBOFURAN	531.1	Y	MRL	1 UG/L		
	2067	HEPTACHLOR EPOXIDE	525.2	Y	MRL	0.02 UG/L	01-01-2020	12-31-2022
	2070	DIELDRIN	525.2	Y	MRL	0.25 UG/L	01-01-2020	12-31-2022
	2077	PROPACHLOR	525.2	Y	MRL	0.5 UG/L		
		2,4-D	515.3	Y	MRL	1 UG/L	01-01-2020	12-31-2022
	2110	2,4,5-TP	515.3	Y	MRL	1 UG/L	01-01-2020	12-31-2022
	2274	HEXACHLOROBENZENE	525.2	Y	MRL	0.1 UG/L	01-01-2020	12-31-2022
	2306	BENZO(A)PYRENE	550	Y	MRL	0.1 UG/L	01-01-2020	12-31-2022
	2326	PENTACHLOROPHENOL	515.3	Y	MRL	0.4 UG/L	01-01-2020	12-31-2022
	2356	ALDRIN	525.2	Y	MRL	0.25 UG/L	01-01-2020	12-31-2022
	2383	TOTAL POLYCHLORINATED BIPHENYLS (PCB)	525.2	Y	MRL	0.08 UG/L	01-01-2020	12-31-2022
	2440	DICAMBA	515.3	Y	MRL	0.3 UG/L		
	2775	TOTAL DDT	525.2	Y	MRL	1 UG/L	01-01-2020	12-31-2022
	2931	1,2-DIBROMO-3-CHLOROPROPA	NE 504.1	Y	MRL	0.02 UG/L	01-01-2020	12-31-2022
	2946	ETHYLENE DIBROMIDE	504.1	Y	MRL	0.01 UG/L	01-01-2020	12-31-2022
	2959	CHLORDANE	525.2	Y	MRL	0.2 UG/L	01-01-2020	12-31-2022

Chem/Rad Sample Results

Return	Г	Water System No. : IL	0975620			Federal Type :	С	
Links		Water System Name	AIRIE PATH		MPAN		С	
Chem/Rad		Principal County Served :LAStatus :A	КE			Primary Source : Activity Date :	GW 01-01-1978	
<u>Samples</u>			20143-01			Collection Date :	02-01-2018	
<u>Analyte</u> <u>List</u>		his list displays sample/results ssociated to the selected sample		r Microbia				
Water	Analyte	Analyte Name	Method	Less than		Reporting Concentra	tion ^{Monitoring} Period	Monitoring Period End
System	Code	1 411001 / 00 1 100110	Code	Indicator	Туре	Level level	Begin Date	Date
Detail	2005	ENDRIN	525.2	Y	MRL	0.1 UG/L	01-01-2017	12-31-2019
		BHC-GAMMA	525.2	Y	MRL	0.1 UG/L	01-01-2017	12-31-2019
Water		METHOXYCHLOR	525.2	Y	MRL	0.1 UG/L	01-01-2017	12-31-2019
<u>Systems</u>		TOXAPHENE	525.2	Y	MRL	1 UG/L	01-01-2017	12-31-2019
	2021	CARBARYL	531.1	Y	MRL	2 UG/L		
Water		METHOMYL	531.1	Y	MRL	0.5 UG/L		
System		DALAPON	515.3	Y	MRL	5 UG/L	01-01-2017	12-31-2019
Search		DIQUAT	549.2	Y	MRL	2 UG/L	01-01-2017	12-31-2019
		DI(2-ETHYLHEXYL) ADIPATE	525.2	Y	MRL	0.6 UG/L	01-01-2017	12-31-2019
County		OXAMYL	531.1	Y	MRL	2 UG/L	01-01-2017	12-31-2019
Map		SIMAZINE	525.2	Y	MRL	0.35 UG/L	01-01-2017	12-31-2019
Â		DI(2-ETHYLHEXYL) PHTHALATH		Y	MRL	1.8 UG/L	01-01-2017	12-31-2019
Glossary		PICLORAM	515.3	Y	MRL	1 UG/L	01-01-2017	12-31-2019
	2041	DINOSEB	515.3	Y	MRL	1 UG/L	01-01-2017	12-31-2019
		HEXACHLOROCYCLOPENTADIE		Y	MRL	0.5 UG/L	01-01-2017	12-31-2019
	2046	CARBOFURAN	531.1	Y	MRL	0.9 UG/L	01-01-2017	12-31-2019
	2050	ATRAZINE	525.2	Y	MRL	0.3 UG/L	01-01-2017	12-31-2019
	2051	LASSO	525.2	Y	MRL	0.2 UG/L	01-01-2017	12-31-2019
		HEPTACHLOR	525.2	Y	MRL	0.04 UG/L	01-01-2017	12-31-2019
		3-HYDROXYCARBOFURAN	531.1	Y	MRL	1 UG/L		
		HEPTACHLOR EPOXIDE	525.2	Y	MRL	0.02 UG/L	01-01-2017	12-31-2019
		DIELDRIN	525.2	Y	MRL	0.05 UG/L	01-01-2017	12-31-2019
		PROPACHLOR	525.2	Y	MRL	0.5 UG/L		
		2,4-D	515.3	Y	MRL	1 UG/L	01-01-2017	12-31-2019
		2,4,5-TP	515.3	Y	MRL	1 UG/L	01-01-2017	
		HEXACHLOROBENZENE	525.2	Y	MRL	0.1 UG/L	01-01-2017	12-31-2019
	2306	BENZO(A)PYRENE	550	Y	MRL	0.1 UG/L	01-01-2017	12-31-2019
	2326	PENTACHLOROPHENOL	515.3	Y	MRL	0.4 UG/L	01-01-2017	12-31-2019
	2356	ALDRIN	525.2	Y	MRL	0.05 UG/L	01-01-2017	12-31-2019
	2383	TOTAL POLYCHLORINATED BIPHENYLS (PCB)	525.2	Y	MRL	0.1 UG/L	01-01-2017	12-31-2019
	2440	DICAMBA	515.3	Y	MRL	0.3 UG/L		
	2775	TOTAL DDT	525.2	Y	MRL	1 UG/L	01-01-2017	12-31-2019
	2931	1,2-DIBROMO-3-CHLOROPROPA		Y	MRL	0.02 UG/L	01-01-2017	12-31-2019
	2946	ETHYLENE DIBROMIDE	504.1	Y	MRL	0.01 UG/L	01-01-2017	12-31-2019
	2959	CHLORDANE	525.2	Y	MRL	0.2 UG/L	01-01-2017	12-31-2019

Chem/Rad Sample Results

Return	Г	Water System No. : II	.0975620			Federa	I Type :	С	
Links		Water System Name	RAIRIE PATH		MPAN	Y- State T	vpe:	С	
		Г	ARBOR RIDG AKE	E			y Source :	GW	
Chem/Rad		Status : A					y Date :	01-01-1978	
			7H0152-01 02				ion Date :	08-02-2017	
<u>Samples</u>	T	his list displays sample/results	of all non-m	nicrobial a	nalvte			DE <> MOF	2)
<u>Analyte</u>		ssociated to the selected sample							()
<u>List</u>	- Ch					ij tes ure ne	,, monuou.		
				Less				Monitoring	Monitorin
Water	Analyte	Analyte Name	Method	than		. U	Concentration		Period En
System	Code	1 kineriy ee 1 (minie	Code	Indicator	Туре	Level	level	Begin Date	Date
Detail	1024	CYANIDE	335.4	Y	MRL	0.005 MG/L		Degin Date	Dutt
	1025	FLUORIDE	300.0	N		0	0.734 MG/L		
Water	1038	NITRATE-NITRITE	353.2	Y	MRL	0.1 MG/L			
<u>Systems</u>	1055	SULFATE	300.0	N		0	59.400 MG/L		
İ	2005	ENDRIN	525.2	Y	MRL	0.1 UG/L			
Water	2010	BHC-GAMMA	525.2	Y	MRL	0.02 UG/L			
<u>System</u>	2015	METHOXYCHLOR	525.2	Y	MRL	0.1 UG/L			
Search	2020	TOXAPHENE	525.2	Y	MRL	1 UG/L			
	2027	ACETOCHLOR	525.2	Y	MRL	1 UG/L			
<u>County</u>	2031	DALAPON	515.1	Y	MRL	5 UG/L			
<u>Map</u>	2035	DI(2-ETHYLHEXYL) ADIPATE	525.2	Y	MRL	0.6 UG/L			
	2037	SIMAZINE	525.2	Y	MRL	0.35 UG/L			
<u>Glossary</u>	2039	DI(2-ETHYLHEXYL) PHTHALAT	Ъ 525.2	Y	MRL	1.8 UG/L			
	2040	PICLORAM	515.1	Y	MRL	1 UG/L			
	2041	DINOSEB	515.1	Y	MRL	1 UG/L			
	2042	HEXACHLOROCYCLOPENTADI	ENE 525.2	Y	MRL	0.5 UG/L			
	2045	METOLACHLOR	525.2	Y	MRL	0.25 UG/L			
	2050	ATRAZINE	525.2	Y	MRL	0.3 UG/L			
	2051	LASSO	525.2	Y	MRL	0.2 UG/L			
	2054	CYANAZINE	525.2	Y	MRL	0.5 UG/L			
-	2055	TRIFLURALIN	525.2	Y	MRL	0.05 UG/L			
	2065	HEPTACHLOR	525.2	Y	MRL	0.04 UG/L			
-	2067	HEPTACHLOR EPOXIDE	525.2	Y	MRL	0.02 UG/L			
-	2070	DIELDRIN	525.2	Y	MRL	0.05 UG/L			
ł	2077	PROPACHLOR	525.2	Y	MRL	0.5 UG/L			
-		BROMACIL	525.2	Y Y	MRL	1 UG/L			
-	2099	DCPA	525.2		MRL	0.5 UG/L			
-		2,4-D	515.1	Y	MRL	1 UG/L			
	2110 2251	2,4,5-TP METHYL TERT-BUTYL ETHER	515.1 524.2	Y Y	MRL MRL	1 UG/L			
	2251	HEXACHLOROBENZENE	524.2	Y Y	MRL	0.5 UG/L 0.1 UG/L			
+	22/4	BENZO(A)PYRENE	525.2	Y Y	MRL	0.1 UG/L 0.1 UG/L			
	2300	PENTACHLOROPHENOL	515.1	Y	MRL	0.1 UG/L 0.4 UG/L			
	2320	ALDRIN	525.2	Y	MRL	0.4 UG/L 0.05 UG/L			
	2378	1,2,4-TRICHLOROBENZENE	524.2	Y	MRL	0.5 UG/L			
ł	2370	CIS-1,2-DICHLOROETHYLENE	524.2	Y	MRL	0.5 UG/L			
ł		TOTAL POLYCHLORINATED							
	2383	BIPHENYLS (PCB)	525.2	Y	MRL	0.4 UG/L			
t	2440	DICAMBA	515.1	Y	MRL	0.25 UG/L			
ļ	2595	METRIBUZIN	525.2	Y	MRL	0.1 UG/L			
ļ	2775	TOTAL DDT	525.2	Y	MRL	1 UG/L			
ļ	2955	XYLENES, TOTAL	524.2	Y	MRL	0.5 UG/L			
	2959	CHLORDANE	525.2	Y	MRL	0.2 UG/L			

					•
2964	DICHLOROMETHANE	524.2	Y	MRL	0.5 UG/L
2968	O-DICHLOROBENZENE	524.2	Y	MRL	0.5 UG/L
2969	P-DICHLOROBENZENE	524.2	Y	MRL	0.5 UG/L
2976	VINYL CHLORIDE	524.2	Y	MRL	0.5 UG/L
2977	1,1-DICHLOROETHYLENE	524.2	Y	MRL	0.5 UG/L
2979	TRANS-1,2-DICHLOROETHYLENE	524.2	Y	MRL	0.5 UG/L
2980	1,2-DICHLOROETHANE	524.2	Y	MRL	0.5 UG/L
2981	1,1,1-TRICHLOROETHANE	524.2	Y	MRL	0.5 UG/L
2982	CARBON TETRACHLORIDE	524.2	Y	MRL	0.5 UG/L
2983	1,2-DICHLOROPROPANE	524.2	Y	MRL	0.5 UG/L
2984	TRICHLOROETHYLENE	524.2	Y	MRL	0.5 UG/L
2985	1,1,2-TRICHLOROETHANE	524.2	Y	MRL	0.5 UG/L
2987	TETRACHLOROETHYLENE	524.2	Y	MRL	0.5 UG/L
2989	CHLOROBENZENE	524.2	Y	MRL	0.5 UG/L
2990	BENZENE	524.2	Y	MRL	0.5 UG/L
2991	TOLUENE	524.2	Y	MRL	0.5 UG/L
2992	ETHYLBENZENE	524.2	Y	MRL	0.5 UG/L
2996	STYRENE	524.2	Y	MRL	0.5 UG/L
9915	ACIFLUORFEN	515.1	Y	MRL	0.5 UG/L

Chem/Rad Sample Results

Return	Г	Water System No. : II	.0975620			Federa	I Type :	С	
Links		Water System Name · P	RAIRIE PATH ARBOR RIDO		MPAN			С	
			AKEOK KIDC AKE			Primar	y Source :	GW	
Chem/Rad	1	Status : A					/ Date :	01-01-1978	
Samples		Lab Sample No. : 50	031818-01			Collect	ion Date :	03-11-2015	
<u>Dumpros</u>	Т	his list displays sample/results	of all non-n	nicrobial a	nalyte	s (TSAAN]	LYT.TYPE CO	DDE <> MOI	<u>z)</u>
<u>Analyte</u>		ssociated to the selected sample							,
List						•			
	A T (Less				Monitoring	Monitoring
Water	Analyte	Analyte Name	Method	than		1 0	Concentration		Period End
<u>System</u>	Code	w.	Code	Indicator	Туре	Level	level	Begin Date	
Detail	2005	ENDRIN	525.2	Y	MRL	0.1 UG/L		01-01-2014	12-31-2016
	2010	BHC-GAMMA	525.2	Y	MRL	0.1 UG/L		01-01-2014	12-31-2016
Water	2015	METHOXYCHLOR	525.2	Y	MRL	0.1 UG/L		01-01-2014	12-31-2016
<u>Systems</u>	2020	TOXAPHENE	525.2	Y	MRL	1 UG/L		01-01-2014	12-31-2016
	2021	CARBARYL	531.1	Y	MRL	2 UG/L			
Water	2022	METHOMYL	531.1	Y	MRL	0.5 UG/L			
System	2031	DALAPON	515.3	Y	MRL	5 UG/L		01-01-2014	12-31-2016
Search	2032	DIQUAT	549.2	Y	MRL	2 UG/L		01-01-2014	12-31-2016
Constant	2033	ENDOTHALL	548.1	Y	MRL	9 UG/L		01-01-2014	12-31-2016
<u>County</u>	2035	DI(2-ETHYLHEXYL) ADIPATE	525.2	Y	MRL	0.6 UG/L		01-01-2014	12-31-2016
<u>Map</u>	2036	OXAMYL	531.1	Y	MRL	2 UG/L		01-01-2014	12-31-2016
Glossary	2037	SIMAZINE	525.2	Y	MRL	0.35 UG/L		01-01-2014	12-31-2016
<u>Giussai y</u>	2039	DI(2-ETHYLHEXYL) PHTHALAT		Y Y	MRL	1.8 UG/L		01-01-2014	12-31-2016
	2040 2041	PICLORAM DINOSEB	515.3 515.3	Y Y	MRL MRL	1 UG/L 1 UG/L		01-01-2014	12-31-2016 12-31-2016
	2041	HEXACHLOROCYCLOPENTADI		Y	MRL	0.5 UG/L		01-01-2014 01-01-2014	12-31-2016
	2042	CARBOFURAN	531.1	Y	MRL	0.3 UG/L 0.9 UG/L		01-01-2014	12-31-2016
	2040	ATRAZINE	525.2	Y	MRL	0.3 UG/L		01-01-2014	12-31-2010
	2050	LASSO	525.2	Y	MRL	0.3 UG/L		01-01-2014	12-31-2010
	2051	HEPTACHLOR	525.2	Y	MRL	0.2 UG/L		01-01-2014	12-31-2016
	2065	3-HYDROXYCARBOFURAN	531.1	Y	MRL	1 UG/L		01 01 2011	12 51 2010
	2067	HEPTACHLOR EPOXIDE	525.2	Y	MRL	0.02 UG/L		01-01-2014	12-31-2016
	2070	DIELDRIN	525.2	Y	MRL	0.05 UG/L		01-01-2014	12-31-2016
	2077	PROPACHLOR	525.2	Y	MRL	0.5 UG/L			
	2105	2,4-D	515.3	Y	MRL	1 UG/L		01-01-2014	12-31-2016
	2110	2,4,5-TP	515.3	Y	MRL	1 UG/L		01-01-2014	12-31-2016
	2274	HEXACHLOROBENZENE	525.2	Y	MRL	0.1 UG/L		01-01-2014	12-31-2016
	2306	BENZO(A)PYRENE	550	Y	MRL	0.1 UG/L		01-01-2014	12-31-2016
	2326	PENTACHLOROPHENOL	515.3	Y	MRL	0.4 UG/L		01-01-2014	12-31-2016
	2356	ALDRIN	525.2	Y	MRL	0.05 UG/L		01-01-2014	12-31-2016
	2383	TOTAL POLYCHLORINATED BIPHENYLS (PCB)	525.2	Y	MRL	0.1 UG/L		01-01-2014	12-31-2016
	2440	DICAMBA	515.3	Y	MRL	0.3 UG/L			
	2775	TOTAL DDT	525.2	Y	MRL	1 UG/L		01-01-2014	12-31-2016
	2931	1,2-DIBROMO-3-CHLOROPROPA	NE 504.1	Y	MRL	0.02 UG/L		01-01-2014	12-31-2016
	2946	ETHYLENE DIBROMIDE	504.1	Y	MRL	0.01 UG/L		01-01-2014	12-31-2016
	2959	CHLORDANE	525.2	Y	MRL	0.2 UG/L		01-01-2014	12-31-2016

Chem/Rad Sample Results

Return		Water System No. :	IL097562	0		Fed	eral Type :	С	
Links		Water System Name :		PATH WAT	ER COI		te Type :	С	
		Principal County Served :		KIDUL		Prir	nary Source :	GW	
Chem/Rad		Status :	A				ivity Date :	01-01-1978	
Samples		Lab Sample No. :	EG04282-	-01			lection Date :	07-21-2021	
<u>Dumpies</u>	Th	nis list displays sample/res	ults of a	ll non-mic	robial	analytes (T	SAANLYT.TY	PE CODE «	\Rightarrow
Analyte		OR) associated to the sele							
List		,		•			•		
	A		N.C. (1 1	Less	т. 1	D	C	Monitoring	Monitoring
Water	Analyte Code	Analyte Name	Method Code	than		Level	Concentration level	Period	Period End
<u>System</u>	Code		Code	Indicator	Туре	Level	level	Begin Date	Date
Detail	1005	ARSENIC	200.8	Y	MRL	1 UG/L		01-01-2020	12-31-2022
		BARIUM	200.8			0	65 UG/L	01-01-2020	12-31-2022
Water		CADMIUM	200.8	Y	MRL	1 UG/L		01-01-2020	12-31-2022
<u>Systems</u>		CHLORIDE	300.0			0	14 MG/L	01-01-2020	12-31-2022
XX7-4		CHROMIUM	200.8	Y	MRL	4 UG/L		01-01-2020	12-31-2022
Water Sustained	1024	CYANIDE	335.4	Y	MRL	0.2 MG/L		01-01-2020	12-31-2022
<u>System</u>		FLUORIDE	4500F-C			0	0.99 MG/L	01-01-2020	12-31-2022
Search		IRON	200.7			0	0.17 MG/L	01-01-2020	12-31-2022
County		MAGNESIUM	200.7			0	19 MG/L	01.01.0000	10.01.0000
<u>County</u> <u>Map</u>		MANGANESE	200.8	V	MDI	0	4.4 UG/L	01-01-2020	12-31-2022
<u>iviap</u>		MERCURY	200.8	Y Y	MRL	0.2 UG/L		01-01-2020	12-31-2022
Glossary		NICKEL SELENIUM	200.8 200.8	Y Y	MRL MRL	5 UG/L 1 UG/L		01-01-2020 01-01-2020	12-31-2022 12-31-2022
Giussai		SODIUM	200.8	I	WIKL	0	29 MG/L	01-01-2020	12-31-2022
	1052	SULFATE	300.0			0	29 MG/L 26 MG/L	01-01-2020	12-31-2022
		ANTIMONY, TOTAL	200.8	Y	MRL	3 UG/L	20 WO/L	01-01-2020	12-31-2022
		BERYLLIUM, TOTAL	200.8	Y	MRL	1 UG/L		01-01-2020	12-31-2022
		THALLIUM, TOTAL	200.8	Y	MRL	1 UG/L		01-01-2020	12-31-2022
		ZINC	200.8			0	13 UG/L	01-01-2020	12-31-2022
	1015	HARDNESS, TOTAL (AS CACO3)	2340B			0	240 MG/L	01-01-2020	12-31-2022
		CALCIUM	200.7			0	63 MG/L	01-01-2020	12-31-2022
		ALKALINITY, TOTAL	2320B			0	250 MG/L	01-01-2020	12-31-2022
		TDS	2540C			0	350 MG/L	01-01-2020	12-31-2022
	2251	METHYL TERT-BUTYL ETHER	524.2	Y	MRL	0.5 UG/L			
	2378	1,2,4- TRICHLOROBENZENE	524.2	Y	MRL	0.5 UG/L		01-01-2020	12-31-2022
	2380	CIS-1,2- DICHLOROETHYLENE	524.2	Y	MRL	0.5 UG/L		01-01-2020	12-31-2022
	2955	XYLENES, TOTAL	524.2	Y	MRL	0.5 UG/L		01-01-2020	12-31-2022
		DICHLOROMETHANE	524.2	Y	MRL	0.5 UG/L		01-01-2020	12-31-2022
		O-DICHLOROBENZENE	524.2	Y	MRL	0.5 UG/L		01-01-2020	12-31-2022
		P-DICHLOROBENZENE	524.2	Y	MRL	0.5 UG/L		01-01-2020	12-31-2022
	2976	VINYL CHLORIDE	524.2	Y	MRL	0.5 UG/L		01-01-2020	12-31-2022
	2977	1,1-DICHLOROETHYLENE	524.2	Y	MRL	0.5 UG/L		01-01-2020	12-31-2022
		TRANS-1,2- DICHLOROETHYLENE	524.2	Y	MRL	0.5 UG/L		01-01-2020	12-31-2022
	2980	1,2-DICHLOROETHANE	524.2	Y	MRL	0.5 UG/L		01-01-2020	12-31-2022
	2981	1,1,1-TRICHLOROETHANE	524.2	Y	MRL	0.5 UG/L		01-01-2020	12-31-2022

https://water.epa.state.il.us/dww/JSP/NonTcrSampleResults.jsp?sample_number=EG04282-01&collection_date=07-21-2021&tinwsys_is_number=717... 1/2

2982	CARBON TETRACHLORIDE	524.2	Y	MRL	0.5 UG/L	01-01-2020	12-31-2022
2983	1,2-DICHLOROPROPANE	524.2	Y	MRL	0.5 UG/L	01-01-2020	12-31-2022
2984	TRICHLOROETHYLENE	524.2	Y	MRL	0.5 UG/L	01-01-2020	12-31-2022
2985	1,1,2-TRICHLOROETHANE	524.2	Y	MRL	0.5 UG/L	01-01-2020	12-31-2022
2987	TETRACHLOROETHYLENE	524.2	Y	MRL	0.5 UG/L	01-01-2020	12-31-2022
2989	CHLOROBENZENE	524.2	Y	MRL	0.5 UG/L	01-01-2020	12-31-2022
2990	BENZENE	524.2	Y	MRL	0.5 UG/L	01-01-2020	12-31-2022
2991	TOLUENE	524.2	Y	MRL	0.5 UG/L	01-01-2020	12-31-2022
2992	ETHYLBENZENE	524.2	Y	MRL	0.5 UG/L	01-01-2020	12-31-2022
2996	STYRENE	524.2	Y	MRL	0.5 UG/L	01-01-2020	12-31-2022

Chem/Rad Sample Results

Return		Water System No. :	IL097562	0		Fed	eral Type :	С	
Links		Water System Name :		PATH WAT	ER COI	ADANIV	te Type :	С	
		Principal County Served :		KIDGE			nary Source :	GW	
Chem/Rad		Status :	A				ivity Date :	01-01-1978	
Samples		Lab Sample No. :	8073472-0	01			lection Date :	07-18-2018	
Samples	-	nis list displays sample/res	ults of a	ll non-mic	robial			PE CODE -	\Rightarrow
Analyte		OR) associated to the sele							
List									
<u>10100</u>				Less				Monitoring	Monitoring
Water	Analyte	Analyte Name	Method	than			Concentration	Period	Period End
<u>System</u>	Code		Code	Indicator	Туре	Level	level	Begin Date	Date
Detail	1005	ARSENIC	200.8			0	1.3 UG/L	01-01-2017	12-31-2019
	1010	BARIUM	200.8			0	55 UG/L	01-01-2017	12-31-2019
Water	1015	CADMIUM	200.8	Y	MRL	1 UG/L		01-01-2017	12-31-2019
<u>Systems</u>	1017	CHLORIDE	300.0			0	14 MG/L	01-01-2017	12-31-2019
	1020	CHROMIUM	200.8	Y	MRL	5 UG/L		01-01-2017	12-31-2019
Water	1024	CYANIDE	335.4	Y	MRL	0.2 MG/L		01-01-2017	12-31-2019
<u>System</u>	1025	FLUORIDE	4500F-C			0	0.931 MG/L	01-01-2017	12-31-2019
Search		IRON	200.7			0	0.65 MG/L	01-01-2017	12-31-2019
		MAGNESIUM	200.7			0	41 MG/L		
<u>County</u>		MANGANESE	200.8			0	7.3 UG/L	01-01-2017	12-31-2019
<u>Map</u>		MERCURY	200.8	Y	MRL	0.2 UG/L		01-01-2017	12-31-2019
CI		NICKEL	200.8	Y	MRL	5 UG/L		01-01-2017	12-31-2019
<u>Glossary</u>		SELENIUM	200.8	Y	MRL	2 UG/L		01-01-2017	12-31-2019
		SODIUM	200.7			0	39 MG/L	01-01-2017	12-31-2019
	1055	SULFATE	300.0			0	63 MG/L	01-01-2017	12-31-2019
		ANTIMONY, TOTAL	200.8	Y	MRL	3 UG/L		01-01-2017	12-31-2019
		BERYLLIUM, TOTAL	200.8	Y	MRL	1 UG/L		01-01-2017	12-31-2019
		THALLIUM, TOTAL	200.8	Y	MRL	2 UG/L	17 110/1	01-01-2017	12-31-2019
		ZINC HARDNESS, TOTAL (AS	200.8			0	17 UG/L	01-01-2017	12-31-2019
	1015	CACO3)	2340B			0	270 MG/L	01-01-2017	12-31-2019
		CALCIUM	200.7	N		0	41 MG/L	01-01-2017	12-31-2019
	1927	ALKALINITY, TOTAL	2320B			0	290 MG/L	01-01-2017	12-31-2019
		TDS	2540C			0	300 MG/L	01-01-2017	12-31-2019
	2251	METHYL TERT-BUTYL ETHER	524.2	Y	MRL	0.5 UG/L			
	2378	1,2,4- TRICHLOROBENZENE	524.2	Y	MRL	0.5 UG/L		01-01-2017	12-31-2019
	2380	CIS-1,2- DICHLOROETHYLENE	524.2	Y	MRL	0.5 UG/L		01-01-2017	12-31-2019
	2955	XYLENES, TOTAL	524.2	Y	MRL	0.5 UG/L		01-01-2017	12-31-2019
	2964	DICHLOROMETHANE	524.2	Y	MRL	0.5 UG/L		01-01-2017	12-31-2019
	2968	O-DICHLOROBENZENE	524.2	Y	MRL	0.5 UG/L		01-01-2017	12-31-2019
	2969	P-DICHLOROBENZENE	524.2	Y	MRL	0.5 UG/L		01-01-2017	12-31-2019
	2976	VINYL CHLORIDE	524.2	Y	MRL	0.5 UG/L		01-01-2017	12-31-2019
	2977	1,1-DICHLOROETHYLENE	524.2	Y	MRL	0.5 UG/L		01-01-2017	12-31-2019
	2979	TRANS-1,2- DICHLOROETHYLENE	524.2	Y	MRL	0.5 UG/L		01-01-2017	12-31-2019
	2980	1,2-DICHLOROETHANE	524.2	Y	MRL	0.5 UG/L		01-01-2017	12-31-2019
	2981	1,1,1-TRICHLOROETHANE	524.2	Y	MRL	0.5 UG/L		01-01-2017	12-31-2019

https://water.epa.state.il.us/dww/JSP/NonTcrSampleResults.jsp?sample_number=8073472-01&collection_date=07-18-2018&tinwsys_is_number=7170... 1/2

2982	CARBON TETRACHLORIDE	524.2	Y	MRL	0.5 UG/L	01-01-2017	12-31-2019
2983	1,2-DICHLOROPROPANE	524.2	Y	MRL	0.5 UG/L	01-01-2017	12-31-2019
2984	TRICHLOROETHYLENE	524.2	Y	MRL	0.5 UG/L	01-01-2017	12-31-2019
2985	1,1,2-TRICHLOROETHANE	524.2	Y	MRL	0.5 UG/L	01-01-2017	12-31-2019
2987	TETRACHLOROETHYLENE	524.2	Y	MRL	0.5 UG/L	01-01-2017	12-31-2019
2989	CHLOROBENZENE	524.2	Y	MRL	0.5 UG/L	01-01-2017	12-31-2019
2990	BENZENE	524.2	Y	MRL	0.5 UG/L	01-01-2017	12-31-2019
2991	TOLUENE	524.2	Y	MRL	0.5 UG/L	01-01-2017	12-31-2019
2992	ETHYLBENZENE	524.2	Y	MRL	0.5 UG/L	01-01-2017	12-31-2019
2996	STYRENE	524.2	Y	MRL	0.5 UG/L	01-01-2017	12-31-2019

Chem/Rad Sample Results

Return	Г	Water System No. : IL	0975620			Federa	I Type :	С	
Links		Water System Name	AIRIE PATH		MPAN	Y- State T	vpe:	С	
		- 1/	ARBOR RIDG AKE	E			y Source :	GW	
Cham /Dad		Status : A					y Date :	01-01-1978	
Chem/Rad			H0152-01 02				tion Date :	08-02-2017	
<u>Samples</u>	T	his list displays sample/results		vicrobial a	nalvte				2)
<u>Analyte</u>		ssociated to the selected sample							()
List	u.	soonated to the selected sample				ijtes are ne	, monuou		
12100				Less				Monitoring	Monitoring
Water	Analyte	Analyte Name	Method	than			Concentration	0	Period End
System	Code	2 shary to 1 value	Code	Indicator	Туре	Level	level	Begin Date	Date
Detail	1024	CYANIDE	335.4	Y	MRL	0.005 MG/L		Degin Date	Date
	1021	FLUORIDE	300.0	N	MILL	0.000 100/12	0.734 MG/L		
Water	1029	NITRATE-NITRITE	353.2	Y	MRL	0.1 MG/L	0.751 1.10,2		
Systems	1055	SULFATE	300.0	N		0	59.400 MG/L		
	2005	ENDRIN	525.2	Y	MRL	0.1 UG/L	0,1100 1110/2		
Water	2009	BHC-GAMMA	525.2	Y	MRL	0.02 UG/L			
System	2015	METHOXYCHLOR	525.2	Y	MRL	0.1 UG/L	<u> </u>		
Search	2020	TOXAPHENE	525.2	Y	MRL	1 UG/L			
	2027	ACETOCHLOR	525.2	Y	MRL	1 UG/L			
County	2031	DALAPON	515.1	Y	MRL	5 UG/L			
Map	2035	DI(2-ETHYLHEXYL) ADIPATE	525.2	Y	MRL	0.6 UG/L			
-	2037	SIMAZINE	525.2	Y	MRL	0.35 UG/L			
Glossary	2039	DI(2-ETHYLHEXYL) PHTHALATI		Y	MRL	1.8 UG/L			
Ŭ.	2040	PICLORAM	515.1	Y	MRL	1 UG/L			
1	2041	DINOSEB	515.1	Y	MRL	1 UG/L			
1	2042	HEXACHLOROCYCLOPENTADIE	ENE 525.2	Y	MRL	0.5 UG/L			
1	2045	METOLACHLOR	525.2	Y	MRL	0.25 UG/L			
İ	2050	ATRAZINE	525.2	Y	MRL	0.3 UG/L			
1	2051	LASSO	525.2	Y	MRL	0.2 UG/L			
1	2054	CYANAZINE	525.2	Y	MRL	0.5 UG/L			
İ	2055	TRIFLURALIN	525.2	Y	MRL	0.05 UG/L			
İ	2065	HEPTACHLOR	525.2	Y	MRL	0.04 UG/L			
İ	2067	HEPTACHLOR EPOXIDE	525.2	Y	MRL	0.02 UG/L			
Ĩ	2070	DIELDRIN	525.2	Y	MRL	0.05 UG/L			
Ĩ	2077	PROPACHLOR	525.2	Y	MRL	0.5 UG/L			
Ĩ	2098	BROMACIL	525.2	Y	MRL	1 UG/L			
I	2099	DCPA	525.2	Y	MRL	0.5 UG/L			
I	2105	2,4-D	515.1	Y	MRL	1 UG/L			
I	2110	2,4,5-TP	515.1	Y	MRL	1 UG/L			
I	2251	METHYL TERT-BUTYL ETHER	524.2	Y	MRL	0.5 UG/L			
	2274	HEXACHLOROBENZENE	525.2	Y	MRL	0.1 UG/L			
	2306	BENZO(A)PYRENE	525.2	Y	MRL	0.1 UG/L			
	2326	PENTACHLOROPHENOL	515.1	Y	MRL				
1	2356	ALDRIN	525.2	Y	MRL				
	2378	1,2,4-TRICHLOROBENZENE	524.2	Y	MRL				
	2380	CIS-1,2-DICHLOROETHYLENE	524.2	Y	MRL	0.5 UG/L			
	2383	TOTAL POLYCHLORINATED	525.2	Y	MRL	0.4 UG/L			
ł		BIPHENYLS (PCB)			_				
	2440	DICAMBA	515.1	Y	MRL				
ł	2595	METRIBUZIN	525.2	Y	MRL				
ł	2775	TOTAL DDT	525.2	Y	MRL				
ł	2955	XYLENES, TOTAL	524.2	Y	MRL				
	2959	CHLORDANE	525.2	Y	MRL	0.2 UG/L			<u> </u>

https://water.epa.state.il.us/dww/JSP/NonTcrSampleResults.jsp?sample_number=17H0152-01_02&collection_date=08-02-2017&tinwsys_is_number=... 1/2

2964	DICHLOROMETHANE	524.2	Y	MRL	0.5 UG/L
2968	O-DICHLOROBENZENE	524.2	Y	MRL	0.5 UG/L
2969	P-DICHLOROBENZENE	524.2	Y	MRL	0.5 UG/L
2976	VINYL CHLORIDE	524.2	Y	MRL	0.5 UG/L
2977	1,1-DICHLOROETHYLENE	524.2	Y	MRL	0.5 UG/L
2979	TRANS-1,2-DICHLOROETHYLENE	524.2	Y	MRL	0.5 UG/L
2980	1,2-DICHLOROETHANE	524.2	Y	MRL	0.5 UG/L
2981	1,1,1-TRICHLOROETHANE	524.2	Y	MRL	0.5 UG/L
2982	CARBON TETRACHLORIDE	524.2	Y	MRL	0.5 UG/L
2983	1,2-DICHLOROPROPANE	524.2	Y	MRL	0.5 UG/L
2984	TRICHLOROETHYLENE	524.2	Y	MRL	0.5 UG/L
2985	1,1,2-TRICHLOROETHANE	524.2	Y	MRL	0.5 UG/L
2987	TETRACHLOROETHYLENE	524.2	Y	MRL	0.5 UG/L
2989	CHLOROBENZENE	524.2	Y	MRL	0.5 UG/L
2990	BENZENE	524.2	Y	MRL	0.5 UG/L
2991	TOLUENE	524.2	Y	MRL	0.5 UG/L
2992	ETHYLBENZENE	524.2	Y	MRL	0.5 UG/L
2996	STYRENE	524.2	Y	MRL	0.5 UG/L
9915	ACIFLUORFEN	515.1	Y	MRL	0.5 UG/L
		-			

Chem/Rad Sample Results

Return	Г	Water System No. :	IL097562	0		Fed	eral Type :	С	
Links			PRAIRIE	PATH WAT	ER CO	MPANY- Star			
		Water System Name :	HARBOF	R RIDGE		Sta	te Type :	С	
		Principal County Served :					nary Source :	GW	
Chem/Rad		Status :	A	02.02			ivity Date :	01-01-1978	
<u>Samples</u>			17H0152-	_			lection Date :	08-02-2017	
		nis list displays sample/res							\diamond
Analyte	Μ	OR) associated to the sele	cted sam	ple. Resul	lts for	Microbial A	Analytes are no	t included.	
List		1			1		I		
XX7-4	Analyte		Method	Less	Level	Reporting	Concentration	0	Monitoring
Water Sustain	Code	Analyte Name	Code	than	Туре	Level	level	Period	Period End
<u>System</u> Detail				Indicator				Begin Date	Date
<u>Detail</u>	1024	CYANIDE	335.4	Y	MRL	0.005 MG/L			
Water	1025	FLUORIDE	300.0	N		0	0.860 MG/L		
<u>Systems</u>	1038	NITRATE-NITRITE	353.2	Y	MRL	0.1 MG/L	26 500 MG/		
<u>Systems</u>	1055	SULFATE METHYL TERT-BUTYL	300.0	N		0	26.500 MG/L		
Water	2251	ETHER	524.2	Y	MRL	0.5 UG/L			
<u>System</u> Search	2378	1,2,4- TRICHLOROBENZENE	524.2	Y	MRL	0.5 UG/L			
	2380	CIS-1,2- DICHLOROETHYLENE	524.2	Y	MRL	0.5 UG/L			
<u>County</u> Map	2955	XYLENES, TOTAL	524.2	Y	MRL	0.5 UG/L			
<u>Map</u>	2964	DICHLOROMETHANE	524.2	Y	MRL	0.5 UG/L			
Glossary	2968	O-DICHLOROBENZENE	524.2	Y	MRL	0.5 UG/L			
<u>01055a1 y</u>	2969	P-DICHLOROBENZENE	524.2	Y	MRL	0.5 UG/L			
	2976	VINYL CHLORIDE	524.2	Y	MRL	0.5 UG/L			
	2977	1,1-DICHLOROETHYLENE	524.2	Y	MRL	0.5 UG/L			
	2979	TRANS-1,2- DICHLOROETHYLENE	524.2	Y	MRL	0.5 UG/L			
	2980	1,2-DICHLOROETHANE	524.2	Y	MRL	0.5 UG/L			
	2981	1,1,1-TRICHLOROETHANE	524.2	Y	MRL	0.5 UG/L		1	
	2982	CARBON TETRACHLORIDE	524.2	Y	MRL	0.5 UG/L			
	2983	1,2-DICHLOROPROPANE	524.2	Y	MRL	0.5 UG/L			
	2984	TRICHLOROETHYLENE	524.2	Y	MRL	0.5 UG/L		1	
	2985	1,1,2-TRICHLOROETHANE	524.2	Y	MRL	0.5 UG/L			
	2987	TETRACHLOROETHYLENE	524.2	Y	MRL	0.5 UG/L		1	
	2989	CHLOROBENZENE	524.2	Y	MRL	0.5 UG/L		1	
	2990	BENZENE	524.2	Y	MRL	0.5 UG/L			
	2991	TOLUENE	524.2	Y	MRL	0.5 UG/L			
	2992	ETHYLBENZENE	524.2	Y	MRL	0.5 UG/L			
	2996	STYRENE	524.2	Y	MRL	0.5 UG/L			

Chem/Rad Sample Results

Return		Water System No. :	IL097562	0		Fed	eral Type :	С	
Links		Water System Name :	PRAIRIE	PATH WAT	ER CO	MPANY- Stat	te Type :	C	
		-	mador	R RIDGE				GW	
		Principal County Served : Status :	A				nary Source : ivity Date :	01-01-1978	
Chem/Rad		Lab Sample No. :	5092252-	01			lection Date :	09-10-2015	
Samples		nis list displays sample/res			robial				
<u>Analyte</u>		OR) associated to the sele							~
<u>List</u>	111		eteu sun	ipie. itesui	101	101101001011	indigites are not	i included.	
List				Less				Monitoring	Monitoring
Water	Analyte	Analyte Name	Method	than	Level	1 0	Concentration	Period	Period End
System	Code	Anaryte Ivanie	Code	Indicator	Туре	Level	level	Begin Date	Date
Detail	1005	ARSENIC	200.8	marcator		0	1.4 UG/L	01-01-2014	12-31-2016
	1010	BARIUM	200.8			0	62 UG/L	01-01-2014	12-31-2016
Water	1015	CADMIUM	200.8	Y	MRL	1 UG/L	02 0 0 2	01-01-2014	12-31-2016
<u>Systems</u>	1020	CHROMIUM	200.8	Y	MRL	4 UG/L		01-01-2014	12-31-2016
			4500CN-	17					
Water	1024	CYANIDE	С	Y	MRL	0.2 MG/L		01-01-2014	12-31-2016
<u>System</u>	1025	FLUORIDE	4500F-C			0	1.04 MG/L	01-01-2014	12-31-2016
Search	1028	IRON	200.7			0	0.28 MG/L	01-01-2014	12-31-2016
	1032	MANGANESE	200.8			0	5.2 UG/L	01-01-2014	12-31-2016
<u>County</u>	1035	MERCURY	200.8	Y	MRL	0.2 UG/L		01-01-2014	12-31-2016
<u>Map</u>	1036	NICKEL	200.8	Y	MRL	5 UG/L		01-01-2014	12-31-2016
	1045	SELENIUM	200.8	Y	MRL	5 UG/L		01-01-2014	12-31-2016
<u>Glossary</u>	1052	SODIUM	200.7			0	26 MG/L	01-01-2014	12-31-2016
	1055	SULFATE	300.0			0	25 MG/L	01-01-2014	12-31-2016
	1074	ANTIMONY, TOTAL	200.8	Y	MRL	3 UG/L		01-01-2014	12-31-2016
	1075	BERYLLIUM, TOTAL	200.8	Y	MRL	1 UG/L		01-01-2014	12-31-2016
	1085	THALLIUM, TOTAL	200.8	Y	MRL	1 UG/L		01-01-2014	12-31-2016
	1095	ZINC	200.8	Y	MRL	6 UG/L		01-01-2014	12-31-2016
	2251	METHYL TERT-BUTYL ETHER	524.2	Y	MRL	0.5 UG/L			
	2378	1,2,4- TRICHLOROBENZENE	524.2	Y	MRL	0.5 UG/L		01-01-2014	12-31-2016
	2380	CIS-1,2- DICHLOROETHYLENE	524.2	Y	MRL	0.5 UG/L		01-01-2014	12-31-2016
	2955	XYLENES, TOTAL	524.2	Y	MRL	0.5 UG/L		01-01-2014	12-31-2016
	2964	DICHLOROMETHANE	524.2	Y	MRL	0.5 UG/L		01-01-2014	12-31-2016
	2968	O-DICHLOROBENZENE	524.2	Y	MRL	0.5 UG/L		01-01-2014	12-31-2016
	2969	P-DICHLOROBENZENE	524.2	Y	MRL	0.5 UG/L		01-01-2014	12-31-2016
	2976	VINYL CHLORIDE	524.2	Y	MRL	0.5 UG/L		01-01-2014	12-31-2016
	2977	1,1-DICHLOROETHYLENE	524.2	Y	MRL	0.5 UG/L		01-01-2014	12-31-2016
	2979	TRANS-1,2- DICHLOROETHYLENE	524.2	Y	MRL	0.5 UG/L		01-01-2014	12-31-2016
	2980	1,2-DICHLOROETHANE	524.2	Y	MRL	0.5 UG/L		01-01-2014	12-31-2016
	2981	1,1,1-TRICHLOROETHANE	524.2	Y	MRL	0.5 UG/L		01-01-2014	12-31-2016
	2982	CARBON TETRACHLORIDE	524.2	Y	MRL	0.5 UG/L		01-01-2014	12-31-2016
	2983	1,2-DICHLOROPROPANE	524.2	Y	MRL	0.5 UG/L		01-01-2014	12-31-2016
	2984	TRICHLOROETHYLENE	524.2	Y	MRL	0.5 UG/L		01-01-2014	12-31-2016
	2985	1,1,2-TRICHLOROETHANE	524.2	Y	MRL	0.5 UG/L		01-01-2014	12-31-2016
	2987	TETRACHLOROETHYLENE	524.2	Y	MRL	0.5 UG/L		01-01-2014	12-31-2016

https://water.epa.state.il.us/dww/JSP/NonTcrSampleResults.jsp?sample_number=5092252-01&collection_date=09-10-2015&tinwsys_is_number=7170... 1/2

2989	CHLOROBENZENE	524.2	Y	MRL	0.5 UG/L	01-01-2014	12-31-2016
2990	BENZENE	524.2	Y	MRL	0.5 UG/L	01-01-2014	12-31-2016
2991	TOLUENE	524.2	Y	MRL	0.5 UG/L	01-01-2014	12-31-2016
2992	ETHYLBENZENE	524.2	Y	MRL	0.5 UG/L	01-01-2014	12-31-2016
2996	STYRENE	524.2	Y	MRL	0.5 UG/L	01-01-2014	12-31-2016

Chem/Rad Sample Results

Return Links

Chem/Rad Samples

Water System No. :	IL0975620	Federal Type :	С
Water System Name :	PRAIRIE PATH WATER COMPANY-HARBOR RIDGE	State Type :	С
Principal County Served :	LAKE	Primary Source :	GW
Status :	А	Activity Date :	01-01-1978
Lab Sample No. :	GD04596-01	Collection Date :	04-27-2023

Water System Detail

Analyte List

Water Systems

W	ater	S	VS	ten

Search

Gloss

This list displays sample/results of all non-microbial analytes (TSAANLYT.TYPE_CODE <> MOR) associated to the selected sample. Results for Microbial Analytes are not included.

<u>Water System</u> Search	Analyte Code	Analyte Name	Method Code	Less than Indicator	Level Type	A 0	Concentration level	Monitoring Period Begin Date	Period End
<u>County Map</u> Glossary		COMBINED RADIUM (-226 & -228)	null	null		null null	1.04 PCI/L	01-01-2017	12-31-2025
<u> </u>	4020	RADIUM- 226	903.1			0	1.04 PCI/L	01-01-2017	12-31-2025
	4030	RADIUM- 228	904.0	Y	MRL	0.636 PCI/L		01-01-2017	12-31-2025
	4109	GROSS ALPHA PARTICLE ACTIVITY	900.0	Y	MRL	2.78 PCI/L		01-01-2017	12-31-2025

Chem/Rad Sample Results

(TSAANLYT.TYPE_CODE <> MOR) associated to the selected sample. Results for

Return Linl

Samples

Return Links	Water System No. :	IL0975620	Federal Type :	С
Chem/Rad	Water System Name :	PRAIRIE PATH WATER COMPANY-HARBOR RIDGE	State Type :	С
amples	Principal County Served :	LAKE	Primary Source :	GW
Analyte List	Status :	A	Activity Date :	01-01-1978
	Lab Sample No. :	30112771001	Collection Date :	01-29-2014

Water System Detail

Water Systems

<u>Water System</u> <u>Search</u>	Analyte Code	Analyte Name	Method Code	Less than Indicator	Type	1 0		Monitoring Period Begin Date	Period End
<u>County Map</u> Glossary		COMBINED RADIUM (-226 & -228)	null	null	MRL	null null	0.732 PCI/L	01-01-2014	12-31-2016
<u>G105541</u> J	4020	RADIUM- 226	903.1	Y	MRL	0.685 PCI/L		01-01-2014	12-31-2016
	4030	RADIUM- 228	904.0	Ν	MRL	0.565 PCI/L	0.732 PCI/L	01-01-2014	12-31-2016
	4109	GROSS ALPHA PARTICLE ACTIVITY	900.0	Y	MRL	2.71 PCI/L		01-01-2014	12-31-2016

Total Number of Records Fetched = 4

Microbial Analytes are not included.